×

A nonlinear system to model communication between yeast cells during their mating process. (English) Zbl 1542.35076

Summary: In this work, we develop a model to describe some aspects of communication between yeast cells. It consists in a coupled system of two one-dimensional non-linear advection-diffusion equations in which the advective field is given by the Hilbert transform. We give some sufficient condition for the blow-up in finite time of the coupled system (formation of a singularity). We provide a biological interpretation of these mathematical results.
{© 2024 IOP Publishing Ltd & London Mathematical Society}

MSC:

35B44 Blow-up in context of PDEs
35K45 Initial value problems for second-order parabolic systems
35K58 Semilinear parabolic equations
35R09 Integro-partial differential equations
92C37 Cell biology
47J26 Fixed-point iterations
Full Text: DOI

References:

[1] Bagnat, M.; Simons, K., Cell surface polarization during yeast mating, Proc. Natl Acad. Sci., 99, 14183-8, 2002 · doi:10.1073/pnas.172517799
[2] Blanchet, A.; Dolbeault, J.; Perthame, B., Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differ. Equ., 44, 32, 2006 · Zbl 1112.35023
[3] Calvez, V2007Modèles et analyses mathématiques pour les mouvements collectifs de cellulesPhD ThesisUniversité Pierre et Marie Curie
[4] Calvez, V.; Hawkins, R.; Meunier, N.; Voituriez, R., Analysis of a nonlocal model for spontaneous cell polarization, SIAM J. Appl. Math., 72, 594-622, 2012 · Zbl 1248.35024 · doi:10.1137/11083486X
[5] Calvez, V.; Meunier, N.; Muller, N.; Voituriez, R., Numerical simulation of the dynamics of molecular markers involved in cell polarisation, Integral Methods in Science and Engineering, Progress in Numerical and Analytical Studies, 2013, Birkhäuser
[6] Calvez, V.; Meunier, N.; Voituriez, R., A one-dimensional Keller-Segel equation with a drift issued from the boundary, C. R. Math. Acad. Sci. Paris, 348, 629-34, 2010 · Zbl 1197.35149 · doi:10.1016/j.crma.2010.04.009
[7] Calvez, V.; Perthame, B.; Sharifi Tabar, M., Modified Keller-Segel system and critical mass for the log interaction kernel, Stochastic Analysis and Partial Differential Equations, vol 429, 45-62, 2007, American Mathematical Society · Zbl 1126.35077
[8] Dyer, J.; Savage, N.; Jin, M.; Zyla, T.; Elston, T.; Lew, D., Tracking shallow chemical gradients by actin-driven wandering of the polarization site, Curr. Biol., 23, 32-41, 2012 · doi:10.1016/j.cub.2012.11.014
[9] Goryachev, A.; Pokhilko, A., Dynamics of Cdc42 network embodies a turing-type mechanism of yeast cell polarity, FEBS Lett., 582, 1437-43, 2008 · doi:10.1016/j.febslet.2008.03.029
[10] Goryachev, B.; Leda, M., Many roads to symmetry breaking: molecular mechanisms and theoretical models of yeast cell polarity, Mol. Biol. Cell, 28, 370-80, 2017 · doi:10.1091/mbc.e16-10-0739
[11] Howell, A.; Savage, N.; Johnson, S.; Bose, I.; Wagner, A.; Zyla, T. R.; Frederik Nijhout, H.; Reed, M. C.; Goryachev, A. B.; Lew, D. J., Singularity in polarization: rewiring yeast cells to make two buds, Cell, 139, 731-43, 2009 · doi:10.1016/j.cell.2009.10.024
[12] Jackson, C.; Hartwell, L., Courtship in S. cerevisiae: both cell types choose mating partners by responding to the strongest pheromone signal, Cell, 63, 1039-51, 1990 · doi:10.1016/0092-8674(90)90507-B
[13] Madden, K.; Snyder, M., Cell polarity and morphogenesis in budding yeast, Annu. Rev. Microbiol., 52, 687-744, 1998 · doi:10.1146/annurev.micro.52.1.687
[14] Marco, E.; Wedlich-Soldner, R.; Li, R.; Altschuler, S.; Wu, L., Principles for the dynamic maintenance of cortical polarity, Cell, 129, 411-20, 2007 · doi:10.1016/j.cell.2007.02.043
[15] McClure, A.; Minakova, M.; Dyer, J. M.; Zyla, T.; Elston, T.; Lew, D., Role of polarized G protein signaling in tracking pheromone gradients, Dev. Cell, 35, 471-82, 2015 · doi:10.1016/j.devcel.2015.10.024
[16] Mori, Y.; Jilkine, A.; Edelstein-Keshet, L., Wave-pinning and cell polarity from a bistable reaction-diffusion system, Biophys. J., 94, 3684-97, 2008 · doi:10.1529/biophysj.107.120824
[17] Muller, N.; Piel, M.; Calvez, V.; Voituriez, R.; Gonçalves-Sá, J.; Guo, C-L; Jiang, X.; Murray, A.; Meunier, N.; Rao, C. V., A predictive model for yeast cell polarization in pheromone gradients, PLoS Comput. Biol., 12, 2016 · doi:10.1371/journal.pcbi.1004795
[18] Nagai, T., Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5, 581-601, 1995 · Zbl 0843.92007
[19] Narang, A., Spontaneous polarization in eukaryotic gradient sensing: a mathematical model based on mutual inhibition of frontness and backness pathways, J. Theor. Biol., 240, 538-53, 2006 · Zbl 1447.92060 · doi:10.1016/j.jtbi.2005.10.022
[20] Onsum, M.; Rao, C., Calling heads from tails: the role of mathematical modeling in understanding cell polarization, Curr. Opin. Cell Biol., 21, 74-81, 2009 · doi:10.1016/j.ceb.2009.01.001
[21] Ozbudak, E.; Becskei, A.; van Oudenaarden, A., A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization, Dev. Cell, 9, 565-71, 2005 · doi:10.1016/j.devcel.2005.08.014
[22] Perthame, B., Transport Equations in Biology (Frontiers in Mathematics), 2007, Birkhäuser Verlag · Zbl 1185.92006
[23] Phillips, R. B.; Kondev, J.; Theriot, J., Physical Biology of the Cell, 2009, Garland Science
[24] Slaughter, B.; Smith, S.; Li, R., Symmetry breaking in the life cycle of the budding yeast, Cold Spring Harb. Perspect. Biol., 1, a003384-003384, 2009 · doi:10.1101/cshperspect.a003384
[25] Slaughter, B.; Unruh, J.; Das, A.; Smith, S.; Rubinstein, B.; Li, R., Non-uniform membrane diffusion enables steady-state cell polarization via vesicular trafficking, Nat. Commun., 4, 1380, 2013 · doi:10.1038/ncomms2370
[26] Slaughter, B.; Unruh, J.; Rubinstein, A.; Li, R., Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity, Nat. Cell Biol., 14, 304-10, 2012 · doi:10.1038/ncb2444
[27] Stein, E., Singular Integrals and Differentiability Properties of Functions (Princeton Mathematical Series), 1970, Princeton University Press · Zbl 0207.13501
[28] Wedlich-Soldner, R.; Altschuler, S.; Wu, L.; Li, R., Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase, Science, 299, 1231-5, 2003 · doi:10.1126/science.1080944
[29] Wedlich-Soldner, R.; Wai, S.; Schmidt, T.; Li, R., Robust cell polarity is a dynamic state established by coupling transport and GTPase signaling, J. Cell Biol., 166, 889-900, 2004 · doi:10.1083/jcb.200405061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.