×

Exponential stability analysis in mean square for a class of stochastic delay differential equations. (English) Zbl 1542.34052

MSC:

34K20 Stability theory of functional-differential equations
34K13 Periodic solutions to functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
Full Text: DOI

References:

[1] Lisena, B., Global attractivity in nonautonomous logistic equations with delay, Nonlinear Anal. RWA, 9, 53-63, 2008 · Zbl 1139.34052 · doi:10.1016/j.nonrwa.2006.09.002
[2] Kolmanovskii, VB; Myshkis, AD, Applied Theory of Functional Differential Equations, 1992, Dordrecht: Kluwer Academic, Dordrecht · Zbl 0785.34005 · doi:10.1007/978-94-015-8084-7
[3] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics, 1993, San Diego: Academic Press, San Diego · Zbl 0777.34002
[4] Kolmanovskii, VB; Nosov, VR, Stability of Functional Differential Equations, 1986, London: Academic Press, London · Zbl 0593.34070
[5] Friedman, A., Stochastic Differential Equations and Applications, 1976, New York: Academic Press, New York · Zbl 0323.60057
[6] Luo, J.; Liu, K., Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps, Stoch. Process. Appl., 118, 864-895, 2008 · Zbl 1186.93070 · doi:10.1016/j.spa.2007.06.009
[7] Luo, J., Fixed points and stability of neutral stochastic delay differential equations, J. Math. Anal. Appl., 334, 1, 431-440, 2007 · Zbl 1160.60020 · doi:10.1016/j.jmaa.2006.12.058
[8] Karatzas, I.; Shreve, SE, Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics, 1991, New York: Springer, New York · Zbl 0734.60060
[9] Liu, K.; Xia, X., On the exponential stability in mean square of neutral stochastic functional differential equations, Syst. Control Lett., 37, 207-215, 1999 · Zbl 0948.93060 · doi:10.1016/S0167-6911(99)00021-3
[10] Mao, XR, Stochastic Differential Equations and Applications, 1997, Chichester: Horwood Publishing, Chichester · Zbl 0892.60057
[11] Chen, Y.; Zheng, WX; Xue, A., A new result on stability analysis for stochastic neutral systems, Automatic, 45, 2100-2104, 2010 · Zbl 1205.93160 · doi:10.1016/j.automatica.2010.08.007
[12] Tocino, A.; Senosiain, MJ, Asymptotic mean-square stability of two-step Maruyama schemes for stochastic differential equations, J. Comput. Appl. Math., 260, 2, 337-348, 2014 · Zbl 1293.65012 · doi:10.1016/j.cam.2013.10.002
[13] Li, X.; Cao, W., On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations, Appl. Math. Comput., 261, 15, 373-381, 2015 · Zbl 1410.34218
[14] Mo, H.; Zhao, X.; Deng, F., Exponential mean-square stability of the \(\hat{I} \)-method for neutral stochastic delay differential equations with jumps, Int. J. Syst. Sci., 48, 3, 462-470, 2017 · Zbl 1358.93182 · doi:10.1080/00207721.2016.1186245
[15] Mo, H.; Deng, F.; Zhang, C., Exponential stability of the split-step \(\theta \)-method for neutral stochastic delay differential equations with jumps, Appl. Math. Comput., 315, 15, 85-95, 2017 · Zbl 1426.65009
[16] Zhou, S.; Jin, H., Strong convergence of implicit numerical methods for nonlinear stochastic functional differential equations, J. Comput. Appl. Math., 324, 241-257, 2017 · Zbl 1365.65020 · doi:10.1016/j.cam.2017.04.015
[17] Zong, X.; Wu, F.; Huang, C., Exponential mean square stability of the theta approximations for neutral stochastic differential delay equations, J. Comput. Appl. Math., 286, 172-185, 2015 · Zbl 1320.34111 · doi:10.1016/j.cam.2015.03.016
[18] Guo, Y.; Xu, C.; Wu, J., Stability analysis of neutral stochastic delay differential equations by a generalisation of Banach’s contraction principle, Int. J. Control, 90, 8, 1555-1560, 2017 · Zbl 1367.93697 · doi:10.1080/00207179.2016.1213524
[19] Guo, Y.; Xu, C., Controllability of stochastic delay-systems with impulse in a separable Hilbert space, Asian J. Control, 18, 2, 779-783, 2016 · Zbl 1346.93072 · doi:10.1002/asjc.1100
[20] Guo, Y., Globally robust stability analysis for stochastic Cohen-Grossberg neural networks with impulse and time-varying delays, Ukr. Math. J., 69, 8, 1049-1060, 2017 · Zbl 1426.93352
[21] Guo, Y., Mean square exponential stability of stochastic delay cellular neural networks, Electron. J. Qual. Theory Differ. Equ., 34, 1-10, 2013 · Zbl 1340.34306 · doi:10.14232/ejqtde.2013.1.34
[22] LaSalle, JP, The Stability of Dynamical System, 1976, Philadelphia: SIAM, Philadelphia · Zbl 0364.93002 · doi:10.1137/1.9781611970432
[23] Fu, X.; Zhu, Q.; Guo, Y., Stabilization of stochastic functional differential systems with delayed impulses, Appl. Math. Comput., 346, 776-789, 2019 · Zbl 1428.93098
[24] Zhu, Q.; Wang, H., Output feedback stabilization of stochastic feedforward systems with unknown control coefficients and unknown output function, Automatica, 87, 166-175, 2018 · Zbl 1378.93141 · doi:10.1016/j.automatica.2017.10.004
[25] Zhu, Q.; Song, S.; Tang, T., Mean square exponential stability of stochastic nonlinear delay systems, Int. J. Control, 90, 11, 2384-2393, 2017 · Zbl 1380.93279 · doi:10.1080/00207179.2016.1249030
[26] Wang, B.; Zhu, Q., Stability analysis of semi-Markov switched stochastic systems, Automatica, 94, 72-80, 2018 · Zbl 1400.93325 · doi:10.1016/j.automatica.2018.04.016
[27] Wang, H.; Zhu, Q., Adaptive output feedback control of stochastic nonholonomic systems with nonlinear parameterization, Automatica, 98, 247-255, 2018 · Zbl 1406.93269 · doi:10.1016/j.automatica.2018.09.026
[28] Guo, Y.; Ge, SS; Ma, Y., Stability of traveling waves solutions for nonlinear cellular neural networks with distributed delays, J. Syst. Sci. Complex., 35, 1, 18-31, 2022 · Zbl 1485.93487 · doi:10.1007/s11424-021-0180-7
[29] Raffoul, YN, Stability in neutral nonlinear differential equations with functional delays using fixed-point theory, Math. Comput. Model., 40, 691-700, 2004 · Zbl 1083.34536 · doi:10.1016/j.mcm.2004.10.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.