×

The maximum number of centers for planar polynomial Kolmogorov differential systems. (English) Zbl 1542.34026

The authors provide interesting results in one of the 33 problems proposed by A. Gasull [S\(\vec{\text{e}}\)MA J. 78, No. 3, 233–269 (2021; Zbl 1487.37024)], more precisely, Problem 10: Determine the maximum number of centers for planar polynomial differential systems of degree \(n \geq 4\). A. Cima et al. [Proc. Am. Math. Soc. 118, No. 1, 151–163 (1993; Zbl 0787.34030)], proved that \( \left[ \frac{n^2 + 1}{2} \right] \leq C(n) \leq \frac{n^2 +n}{2} - 1, \ \forall n \geq 2\), where \(C(n)\) represents the maximum number of centers for a class of polynomials systems and \([\cdot]\) is the integer part of the number.
The paper considers the above mentioned Problem 10 for a class of polynomial systems of the form \[ \dot{x}=x P(x,y), \ \ \dot{y}=y Q(x,y),\tag{1} \] where \(P(x, y)\) and \(Q(x, y)\) are real polynomials of degree \(n - 1\) and \(m -1\), respectively and \(n \geq m\). The authors call such systems as planar polynomial Kolmogorov differential systems of degree n.
The main results of the paper are Theorem 1.1 and Theorem 1.2. Theorem 1.1 provides lower and upper bounds for the maximum number of centers for system (1) of degree \(n\), more precisely it is proved that \[ \left[ \frac{n^2 - 1}{2} \right] \leq K_C(n) \leq \frac{n^2 +n}{2} - 2, \ \forall n \geq 2, \] where \(K_C(n)\) denotes the maximum number of centers for system (1) of degree \(n\). Theorem 1.2 states that \(K_C(4)=7\), that is, the maximum number of centers for a quartic system of the form (1) is seven.
Furthermore, the authors propose the following conjecture: \(K_C(n) = \left[ \frac{n^2 - 1}{2}\right]\) \(\forall n \in \mathbb{N}\).

MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C08 Ordinary differential equations and connections with real algebraic geometry (fewnomials, desingularization, zeros of abelian integrals, etc.)
34C25 Periodic solutions to ordinary differential equations
Full Text: DOI

References:

[1] Arnold, V. I.; Varchenko, A.; Goussien-Zade, S., Singularités des applications différentiables, 1982, Israel Program for Scientific Translations, Mir: Israel Program for Scientific Translations, Mir Moscow
[2] Cima, A.; Gasull, A.; Manosas, F., Some applications of the Euler-Jacobi formula to differential equations, Proc. Am. Math. Soc., 118, 151-163, 1993 · Zbl 0787.34030
[3] Cima, A.; Llibre, J., Configurations of fans and nests of limit cycles for polynomial vector fields in the plane, J. Differ. Equ., 82, 71-97, 1989 · Zbl 0703.34040
[4] Cima, A.; Llibre, J., Bounded polynomial vector fields, Trans. Am. Math. Soc., 318, 557-579, 1990 · Zbl 0695.34028
[5] Dulac, H., Détermination et integration d’une certaine classe d’équations différentielle ayant par point singulier un centre, Bull. Sci. Math. Sér. (2), 32, 230-252, 1908 · JFM 39.0374.01
[6] Dumortier, F.; Llibre, J.; Artés, J. C., Qualitative Theory of Planar Differential Systems, Universitext, 2006, Springer · Zbl 1110.34002
[7] Eisenbud, D.; Levine, H., An algebraic formula for the degree of a \(C^\infty\) map germ, Ann. Math., 106, 19-44, 1977 · Zbl 0398.57020
[8] Fulton, W., Algebraic Curves, Mathematics Lecture Note Series, 1974, W.A. Benjamin
[9] Gasull, A., Some open problems in low dimensional dynamical systems, SeMA J., 78, 233-269, 2021 · Zbl 1487.37024
[10] Griffiths, P. A.; Harris, J., Principles of Algebraic Geometry, 1973, Wiley
[11] Hartshorne, R., Algebraic Geometry, 2013, Springer · Zbl 0532.14001
[12] H. He, C. Liu, D. Xiao, The maximum number of centers of planar polynomial Hamiltonian vector fields, Preprint.
[13] He, H.; Liu, C.; Xiao, D., Configuration of planar Kolmogorov cubic polynomial differential systems with the most centers, Discrete Contin. Dyn. Syst. Ser. B, 29, 1549-1566, 2024 · Zbl 07805441
[14] Kolomogorov, A. N., SuUa Teoria di Volterra della Lotta per l’Esistenza, G. Ist. Ital. Attuari, 7, 74-80, 1936 · JFM 62.1263.01
[15] Llibre, J.; Xiao, D., On the configurations of centers of planar Hamiltonian Kolmogorov cubic polynomial differential systems, Pac. J. Math., 306, 611-644, 2020 · Zbl 1453.37054
[16] Poincaré, H., Mémoire sur les courbes définies par une équation differentielle, J. Math. Pures Appl., 7, 375-422, 1881 · JFM 13.0591.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.