×

Finite groups with permuteral primary subgroups. (English) Zbl 1542.20083

Let \(H\) be a subgroup of a finite group \(G\). The permutizer \(P_G(H)\) is the subgroup generated by all cyclic subgroups of \(G\) that permute with \(H\), that is \(P_G(H)=\langle x\in G \, | \, \langle x\rangle H=H\langle x\rangle \rangle\). We say that \(H\) is permuteral in \(G\) if \(P_G(H) = G\) and strongly permuteral in \(G\) if \(P_U(H) = U\) for every subgroup \(U\) of \(G\) such that \(H\leq U\leq G\). Let \(\mathbb{P}\) be the set of all primes. We say that \(H\) is \(\mathbb{P}\)-subnormal in \(G\) if there is a chain of subgroups \(H=H_0\leq H_1\leq \cdots\leq H_n=G\), such that \(|H_i : H_{i-1}|\in\mathbb{P}\cup \{1\}\) for each \(i\). A group of prime power order is called a primary group and the class of all groups with \(\mathbb{P}\)-subnormal primary cyclic subgroups is denoted by \(\mathrm{v}\mathfrak{U}\).
In the paper under review, the authors determine all non-abelian finite simple groups with a \(\mathbb{P}\)-subnormal or strongly permuteral Sylow subgroup. More precisely, they prove the following theorem:
Theorem A. Let \(G\) be a non-abelian finite simple group and let \(R\) be a Sylow \(r\)-subgroup of \(G\) that is \(\mathbb{P}\)-subnormal in \(G\). Then, \(r=2\) and \(G\) is isomorphic to \(L_2(7)\), \(L_2(11)\) or \(L_2(2^m)\) where \(2^m+1\in\mathbb{P}\). If, in addition, \(R\) is strongly permuteral in \(G\), then \(G\) is isomorphic to \(L_2(7)\).They also consider primary cyclic subgroups and show the following.
Theorem B. If every primary cyclic subgroup of a finite group \(G\) is strongly permuteral, then \(G\) is supersoluble.
Theorem C. If every primary cyclic subgroup of a group G is \(\mathbb{P}\)-subnormal or strongly permuteral, then \(G\in\mathrm{v}\mathfrak{U}\).

MSC:

20D05 Finite simple groups and their classification
20D10 Finite solvable groups, theory of formations, Schunck classes, Fitting classes, \(\pi\)-length, ranks
20D20 Sylow subgroups, Sylow properties, \(\pi\)-groups, \(\pi\)-structure
20D35 Subnormal subgroups of abstract finite groups

Software:

GAP; permut
Full Text: DOI

References:

[1] Ballester-Bolinches, A., Cosme-Llópez, E., Esteban-Romero, R.: GAP Package Permut. Ver. 2.0.3 released on 19-08-2018. https://gap-packages.github.io/permut
[2] Ballester-Bolinches, A.; Esteban-Romero, R., On minimal non-supersoluble groups, Rev. Mat. Iberoam., 23, 1, 127-142, 2007 · Zbl 1126.20013 · doi:10.4171/rmi/488
[3] Ballester-Bolinches, A.; Esteban-Romero, R.; Robinson, DJS, On finite minimal non-nilpotent groups, Proc. Am. Math. Soc., 133, 12, 3455-3462, 2005 · Zbl 1082.20006 · doi:10.1090/S0002-9939-05-07996-7
[4] Cameron, PJ; Solomon, R., Chains of subgroups in symmetric groups, J. Algebra, 127, 340-352, 1989 · Zbl 0683.20004 · doi:10.1016/0021-8693(89)90256-1
[5] Chen, R.; Zhao, X.; Li, X., \( \mathbb{P} \)-subnormal subgroups and the structure of finite groups, Ric. Mat., 2021 · Zbl 1525.20018 · doi:10.1007/s11587-021-00582-4
[6] Conway, JH; Curtis, RT; Norton, SP; Parker, RA; Wilson, RA, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, 1985, Oxford: Clarendon Press, Oxford · Zbl 0568.20001
[7] Doerk, K., Minimal nicht überauflösbare, endliche gruppen, Math. Z., 91, 198-205, 1966 · Zbl 0135.05401 · doi:10.1007/BF01312426
[8] Gorenstein, D., Finite Simple Groups. An Introduction to Their Classification, 1982, New York: Plenum Publ. Corp., New York · Zbl 0483.20008
[9] Huppert, B., Endliche Gruppen I, 1967, Berlin: Springer, Berlin · Zbl 0217.07201 · doi:10.1007/978-3-642-64981-3
[10] Kniahina, VN; Monakhov, VS, Finite groups with \(\mathbb{P} \)-subnormal Sylow subgroup, Ukr. Mat. Zh., 72, 10, 1365-1371, 2020 · Zbl 1506.20044 · doi:10.37863/umzh.v72i10.2264
[11] Liu, X.; Wang, Y., Implications of permutizers of some subgroups in finite groups, Commun. Algebra, 33, 559-565, 2005 · Zbl 1075.20010 · doi:10.1081/AGB-200047439
[12] Monakhov, VS, Finite groups with abnormal and \(\mathfrak{U} \)-subnormal subgroups, Sib. Math. J., 57, 2, 352-363, 2016 · Zbl 1384.20016 · doi:10.1134/S0037446616020178
[13] Monakhov, V.S.: The Schmidt subgroups, its existence, and some of their applications. In: Proceedings of the Ukrainian Mathematical Congress-2001, Inst. Mat. NAN Ukrainy, Kyiv, pp. 81-90 (2002) · Zbl 1099.20511
[14] Monakhov, VS; Kniahina, VN, Finite group with \(\mathbb{P} \)-subnormal subgroups, Ric. Mat., 62, 307-323, 2013 · Zbl 1306.20015 · doi:10.1007/s11587-013-0153-9
[15] Qiao, S.; Qian, G.; Wang, Y., Finite groups with the maximal permutizer condition, J. Algebra Appl., 12, 5, 1250217, 2013 · Zbl 1283.20011 · doi:10.1142/S0219498812502179
[16] The GAP Group: GAP—Groups, Algorithms, and Programming. Ver. 4.11.0 released on 29-02-2020. http://www.gap-system.org
[17] Vasil’ev, AF; Vasil’eva, TI; Tyutyanov, VN, On the finite groups of supersoluble type, Sib. Math. J., 51, 6, 1004-1012, 2010 · Zbl 1226.20013 · doi:10.1007/s11202-010-0099-z
[18] Vasil’ev, AF; Vasil’ev, VA; Vasil’eva, TI, On permuteral subgroups in finite groups, Sib. Math. J., 55, 2, 230-238, 2014 · Zbl 1307.20018 · doi:10.1134/S0037446614020050
[19] Weinstein, M., Between Nilpotent and Solvable, 1982, Passaic: Polygonal, Passaic · Zbl 0488.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.