×

2-Selmer parity for hyperelliptic curves in quadratic extensions. (English) Zbl 1542.11058

Let \(A\) be an abelian variety over a number field \(K\), and let \(w(A/K)\) be the root number appearing in the functional equation of the \(L\)-function of \(A/K\). The Birch-and-Swinnerton-Dyer Conjecture implies that \(w(A/K) = (-1)^{\mathrm{rk}(A/K)}\), where \(\mathrm{rk}\) is the Mordell-Weil rank of \(A/K\), and further \(w(A/K) = (-1)^{\mathrm{rk}_p(A/K)}\), where \(\mathrm{rk}_p\) is the \(p^\infty\)-Selmer rank of \(A/K\) and \(p\) is prime. This is called the \(p\)-parity conjecture.
The \(p\)-parity conjecture is known for elliptic curves over \(\mathbb Q\), and the literature for elliptic curves is discussed in the paper under review. Much less is known for higher dimensional abelian varieties, and the author of the paper under review proves the following. Let \(K\) be a number field, and \(L/K\) be a quadratic extension. Let \(C/K\) be a hyperelliptic curve of genus \(g\ge 2\), and let \(J/K\) be the Jacobian of \(C\). Suppose that \(J\) has semistable reduction at each odd prime of \(K\) that ramifies in \(L/K\). Further assume that for each even prime of \(K\) that is inert in \(L/K\), \(J/K\) has good reduction, and that for each even prime \(\mathfrak p\) of \(K\) that ramifies in \(L/K\), \(J/K\) has good ordinary reduction, and \(K_{\mathfrak p}(J[2])/K_{\mathfrak p}\) has odd degree. Then, the \(2\)-parity conjecture holds for \(J/L\). The author also shows that there are plenty of examples that satisfy the hypothesis of the theorem.
In [K. Kramer and J. Tunnell, Compos. Math. 46, 307–352 (1982; Zbl 0496.14030); T. Dokchitser and V. Dokchitser, J. Reine Angew. Math. 658, 39–64 (2011; Zbl 1314.11041)] are considered the \(2\)-parity conjecture for an elliptic curve over quadratic extensions of a number field, and the author of the paper under review follows on the previous works. In [V. Dokchitser and C. Maistret, Proc. Lond. Math. Soc. (3) 127, No. 2, 295–365 (2023; Zbl 07740477)] is considered the \(2\)-parity conjecture for some general semistable abelian surfaces.

MSC:

11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11G10 Abelian varieties of dimension \(> 1\)
11G20 Curves over finite and local fields
11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14K15 Arithmetic ground fields for abelian varieties

References:

[1] M. F.Atiyah and C. T. C.Wall, Cohomology of groups, Algebraic Number Theory Proc. Instructional Conf., Brighton, 1965, pp. 94-115. · Zbl 1494.20079
[2] A. J.Best, L. A.Betts, M.Bisatt, R.vanBommel, V.Dokchitser, O.Faraggi, S.Kunzweiler, C.Maistret, A.Morgan, S.Muselli, and S.Nowell, A user’s guide to the local arithmetic of hyperelliptic curves, Bull. Lond. Math. Soc.54 (2022), no. 3, 825-867. · Zbl 1537.11091
[3] L. A.Betts, Variation of Tamagawa numbers of Jacobians of hyperelliptic curves with semistable reduction, J. Number Theory231 (2022), 158-213. · Zbl 1483.11125
[4] L. A.Betts and V.Dokchitser, Variation of Tamagawa numbers of semistable abelian varieties in field extensions, Math. Proc. Cambridge Philos. Soc.166 (2019), no. 3, 487-521. With an appendix by V. Dokchitser and A. Morgan. · Zbl 1420.14103
[5] S.Bosch and Q.Liu, Rational points of the group of components of a Néron model, Manuscripta Math.98 (1999), no. 3, 275-293. · Zbl 0934.14029
[6] S.Bosch, W.Lütkebohmert, and M.Raynaud, Néron models, Erg. Math., vol. 21, Springer, Berlin, 1990. · Zbl 0705.14001
[7] J. W. S.Cassels, Global fields, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), 1967, pp. 42-84. · Zbl 1492.11156
[8] K.Česnavičius, The \(p\)‐parity conjecture for elliptic curves with a \(p\)‐isogeny, J. Reine Angew. Math.719 (2016), 45-73. · Zbl 1388.11032
[9] K.Česnavičius, The \(\ell \)‐parity conjecture over the constant quadratic extension, Math. Proc. Cambridge Philos. Soc.165 (2018), no. 3, 385-409. · Zbl 1448.11111
[10] K.Česnavičius and N.Imai, The remaining cases of the Kramer‐Tunnell conjecture, Compos. Math.152 (2016), no. 11, 2255-2268. · Zbl 1403.11046
[11] J.Coates, T.Fukaya, K.Kato, and R.Sujatha, Root numbers, Selmer groups and non‐commutative Iwasawa theory, J. Algebraic Geom.19 (2010), 19-97. · Zbl 1213.11135
[12] G.Cornelissen, Two‐torsion in the Jacobian of hyperelliptic curves over finite fields, Arch. Math. (Basel)77 (2001), no. 3, 241-246. · Zbl 1029.11021
[13] G.Cornelissen, Erratum to: Two‐torsion in the Jacobian of hyperelliptic curves over finite fields, Arch. Math. (Basel)85 (2005), no. 6, loose erratum.
[14] W.Castryck, M.Streng, and D.Testa, Curves in characteristic 2 with non‐trivial 2‐torsion, Adv. Math. Commun.8 (2014), no. 4, 479-495. · Zbl 1327.14139
[15] T.Dokchitser and V.Dokchitser, Regulator constants and the parity conjecture, Invent. Math.178 (2009), no. 1, 23-71. · Zbl 1219.11083
[16] T.Dokchitser and V.Dokchitser, On the Birch‐Swinnerton‐Dyer quotients modulo squares, Ann. of Math. (2)172 (2010), no. 1, 567-596. · Zbl 1223.11079
[17] T.Dokchitser and V.Dokchitser, Root numbers and parity of ranks of elliptic curves, J. Reine Angew. Math.658 (2011), 39-64. · Zbl 1314.11041
[18] T.Dokchitser, V.Dokchitser, C.Maistret, and A.Morgan, Arithmetic of hyperelliptic curves over local fields, Math. Ann. (2023), 1213-1322. · Zbl 1520.11061
[19] V.Dokchitser and C.Maistret, On the parity conjecture for abelian surfaces, Proc. London Math. Soc.127 (2023), no. 2, 295-365. · Zbl 07740477
[20] O.Faraggi and S.Nowell, Models of hyperelliptic curves with tame potentially semistable reduction, Trans. London Math. Soc.7 (2020), no. 1, 49-95. · Zbl 1492.11107
[21] J.‐M.Fontaine, Il n’y a pas de variété abélienne sur \({\bf Z}\), Invent. Math.81 (1985), no. 3, 515-538. · Zbl 0612.14043
[22] H.Green and C.Maistret, 2‐parity conjecture for elliptic curves with isomorphic 2‐torsion, Proc. R. Soc. A.478 (2022), 20220012.
[23] A.Grothendieck, Modèles de Néron et monodromie, SGA7‐I, Expose IX, LNM 288, Springer, Berlin, 1972. · Zbl 0248.14006
[24] K.Gruenberg, Profinite groups, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), 1967, pp. 116-127. · Zbl 1494.20036
[25] Z.Klagsbrun, B.Mazur, and K.Rubin, Disparity in Selmer ranks of quadratic twists of elliptic curves, Ann. of Math. (2)178 (2013), no. 1, 287-320. · Zbl 1300.11063
[26] K.Kramer, Arithmetic of elliptic curves upon quadratic extension, Trans. Amer. Math. Soc.264 (1981), no. 1, 121-135. · Zbl 0471.14020
[27] K.Kramer and J.Tunnell, Elliptic curves and local \(\varepsilon \)‐factors, Compositio Math.46 (1982), no. 3, 307-352. · Zbl 0496.14030
[28] S.Lichtenbaum, Duality theorems for curves over \(p\)‐adic fields, Invent. Math.7 (1969), 120-136. · Zbl 0186.26402
[29] Q.Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford Science Publications. · Zbl 0996.14005
[30] Q.Liu, Conducteur et discriminant minimal de courbes de genre 2, Compositio Math.94 (1994), no. 1, 51-79. · Zbl 0837.14023
[31] Q.Liu, Modèles minimaux des courbes de genre deux, J. Reine Angew. Math.453 (1994), 137-164. · Zbl 0805.14013
[32] Q.Liu, Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète, Trans. Amer. Math. Soc.348 (1996), no. 11, 4577-4610. · Zbl 0926.11043
[33] D.Lorenzini, Torsion and Tamagawa numbers, Ann. Inst. Fourier (Grenoble)61 (2011), no. 5, 1995-2037. · Zbl 1283.11088
[34] J.Lubin and M. I.Rosen, The norm map for ordinary abelian varieties, J. Algebra52 (1978), no. 1, 236-240. · Zbl 0417.14035
[35] B.Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math.18 (1972), 183-266. · Zbl 0245.14015
[36] B.Mazur and K.Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Ann. of Math. (2)166 (2007), no. 2, 579-612. · Zbl 1219.11084
[37] B.Mazur, K.Rubin, and A.Silverberg, Twisting commutative algebraic groups, J. Algebra314 (2007), no. 1, 419-438. · Zbl 1128.14034
[38] J. S.Milne, On the arithmetic of abelian varieties, Invent. Math.17 (1972), 177-190. · Zbl 0249.14012
[39] J. S.Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 103-150. · Zbl 0604.14028
[40] A.Morgan, 2‐Selmer parity for Jacobians of hyperelliptic curves in quadratic extensions, Ph.D. thesis, University of Bristol, 2015.
[41] A.Morgan, Quadratic twists of abelian varieties and disparity in Selmer ranks, Algebra Number Theory13 (2019), no. 4, 839-899. · Zbl 1455.11087
[42] D.Mumford, Theta characteristics of an algebraic curve, Ann. Sci. de l’École Norm. Sup.4 (1971), 181-192. · Zbl 0216.05904
[43] Y.Namikawa and K.Ueno, The complete classification of fibres in pencils of curves of genus two, Manuscripta Math.9 (1973), 143-186. · Zbl 0263.14007
[44] J.Nekovář, Some consequences of a formula of Mazur and Rubin for arithmetic local constants, Algebra Number Theory7 (2013), no. 5, 1101-1120. · Zbl 1368.11059
[45] S.Nowell, Models of hyperelliptic curves over \(p\)‐adic fields, Ph.D. thesis, University College London, 2022.
[46] A.Obus and P.Srinivasan, Conductor‐discriminant inequality for hyperelliptic curves in odd residue characteristic, IMRN (2023), to appear.
[47] A. P.Ogg, On pencils of curves of genus two, Topology5 (1966), 355-362. · Zbl 0145.17802
[48] B.Poonen and E.Rains, Self cup products and the theta characteristic torsor, Math. Res. Lett.18 (2011), no. 6, 1305-1318. · Zbl 1297.18005
[49] B.Poonen and E.Rains, Random maximal isotropic subspaces and Selmer groups, J. Amer. Math. Soc.25 (2012), no. 1, 245-269. · Zbl 1294.11097
[50] B.Poonen and E. F.Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math.488 (1997), 141-188. · Zbl 0888.11023
[51] B.Poonen and M.Stoll, The Cassels‐Tate pairing on polarized abelian varieties, Ann. of Math. (2)150 (1999), no. 3, 1109-1149. · Zbl 1024.11040
[52] M.Raynaud, Variétés abéliennes et géométrie rigide, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, 1971, pp. 473-477. · Zbl 0223.14021
[53] I.Reiner, The Schur index in the theory of group representations, Michigan Math. J.8 (1961), 39-47. · Zbl 0098.02102
[54] M.Sabitova, Root numbers of abelian varieties, Trans. Amer. Math. Soc.359 (2007), no. 9, 4259-4284. · Zbl 1132.11030
[55] M.Sadek, On quadratic twists of hyperelliptic curves, Rocky Mountain J. Math.44 (2014), no. 3, 1015-1026. · Zbl 1304.14041
[56] E. F.Schaefer, Class groups and Selmer groups, J. Number Theory56 (1996), no. 1, 79-114. · Zbl 0859.11034
[57] J.‐P.Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer, New York‐Berlin, 1979. Translated from the French by M. J. Greenberg. · Zbl 0423.12016
[58] P.Srinivasan, Invariants linked to models of curves over discrete valuation rings, Ph.D. thesis, Massachusetts Institute of Technology, 2016.
[59] P.Srinivasan, Conductors and minimal discriminants of hyperelliptic curves: a comparison in the tame case, arxiv:1910.08228, 2019.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.