×

Joint Bayesian analysis of large angular scale CMB temperature anomalies. (English) Zbl 1541.83189

Summary: Cosmic microwave background measurements show an agreement with the concordance cosmology model except for a few notable anomalies: Power Suppression, the lack of large scale power in the temperature data compared to what is expected in the concordance model, and Cosmic Hemispherical Asymmetry, a dipolar breakdown of statistical isotropy. An expansion of the CMB covariance in Bipolar Spherical Harmonics naturally parametrizes both these large-scale anomalies, allowing us to perform an exhaustive, fully Bayesian joint analysis of the power spectrum and violations of statistical isotropy up to the dipole level. Our analysis sheds light on the scale dependence of the Cosmic Hemispherical Asymmetry. Assuming a scale-dependent dipole modulation model with a two-parameter power law form, we explore the posterior pdf of amplitude \(A(l = 16)\) and the power law index \(\alpha\) and find the maximum a posteriori values \(A_*(l = 16) = 0.064 \pm 0.022\) and \(\alpha_* = -0.92 \pm 0.22\). The maximum a posteriori direction associated with the Cosmic Hemispherical Asymmetry is \((l, b) = (247.8^\circ, -19.6^\circ)\) in Galactic coordinates, consistent with previous analyses. We evaluate the Bayes factor \(B_{SI\text{-}DM}\) to compare the Cosmic Hemispherical Asymmetry model with the isotropic model. The data prefer but do not substantially favor the anisotropic model (\(B_{SI\text{-}DM}=0.4\)). We consider several priors and find that this evidence ratio is robust to prior choice. The large-scale power suppression does not soften when jointly inferring both the isotropic power spectrum and the parameters of the asymmetric model, indicating no evidence that these anomalies are coupled.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology

References:

[1] H.K. Eriksen, F.K. Hansen, A.J. Banday, K.M. Gorski and P.B. Lilje, 2004 Asymmetries in the cosmic microwave background anisotropy field, https://doi.org/10.1086/382267 Astrophys. J.605 14 [Erratum ibid 609 (2004) 1198] [astro-ph/0307507] · doi:10.1086/382267
[2] F.K. Hansen, A.J. Banday and K.M. Gorski, 2004 Testing the cosmological principle of isotropy: local power spectrum estimates of the WMAP data, https://doi.org/10.1111/j.1365-2966.2004.08229.x Mon. Not. Roy. Astron. Soc.354 641 [astro-ph/0404206] · doi:10.1111/j.1365-2966.2004.08229.x
[3] J. Hoftuft, H.K. Eriksen, A.J. Banday, K.M. Gorski, F.K. Hansen and P.B. Lilje, 2009 Increasing evidence for hemispherical power asymmetry in the five-year WMAP data, https://doi.org/10.1088/0004-637X/699/2/985 Astrophys. J.699 985 [0903.1229] · doi:10.1088/0004-637X/699/2/985
[4] Planck collaboration, 2016 Planck 2015 results. XVI. Isotropy and statistics of the CMB, https://doi.org/10.1051/0004-6361/201526681 Astron. Astrophys.594 A16 [1506.07135] · doi:10.1051/0004-6361/201526681
[5] Planck collaboration, 2014 Planck 2013 results. XXIII. Isotropy and statistics of the CMB, https://doi.org/10.1051/0004-6361/201321534 Astron. Astrophys.571 A23 [1303.5083] · doi:10.1051/0004-6361/201321534
[6] C.M. Hirata, 2009 Constraints on cosmic hemispherical power anomalies from quasars J. Cosmol. Astropart. Phys.2009 09 011 [0907.0703]
[7] D. Alonso, A.I. Salvador, F.J. Sánchez, M. Bilicki, J. García-Bellido and E. Sánchez, 2015 Homogeneity and isotropy in the two micron all sky survey photometric redshift catalogue, https://doi.org/10.1093/mnras/stv309 Mon. Not. Roy. Astron. Soc.449 670 [1412.5151] · doi:10.1093/mnras/stv309
[8] A.L. Erickcek, M. Kamionkowski and S.M. Carroll, 2008 A hemispherical power asymmetry from inflation, https://doi.org/10.1103/PhysRevD.78.123520 Phys. Rev. D 78 123520 [0806.0377] · doi:10.1103/PhysRevD.78.123520
[9] J.F. Donoghue, K. Dutta and A. Ross, 2009 Non-isotropy in the CMB power spectrum in single field inflation, https://doi.org/10.1103/PhysRevD.80.023526 Phys. Rev. D 80 023526 [astro-ph/0703455] · doi:10.1103/PhysRevD.80.023526
[10] A.L. Erickcek, C.M. Hirata and M. Kamionkowski, 2009 A scale-dependent power asymmetry from isocurvature perturbations, https://doi.org/10.1103/PhysRevD.80.083507 Phys. Rev. D 80 083507 [0907.0705] · doi:10.1103/PhysRevD.80.083507
[11] L. Ackerman, S.M. Carroll and M.B. Wise, 2007 Imprints of a primordial preferred direction on the microwave background, https://doi.org/10.1103/PhysRevD.75.083502 Phys. Rev. D 75 083502 [Erratum ibid D 80 (2009) 069901] [astro-ph/0701357] · doi:10.1103/PhysRevD.75.083502
[12] S. Mukherjee, 2015 Hemispherical asymmetry from an isotropy violating stochastic gravitational wave background, https://doi.org/10.1103/PhysRevD.91.062002 Phys. Rev. D 91 062002 [1412.2491] · doi:10.1103/PhysRevD.91.062002
[13] L. Dai, D. Jeong, M. Kamionkowski and J. Chluba, 2013 The pesky power asymmetry, https://doi.org/10.1103/PhysRevD.87.123005 Phys. Rev. D 87 123005 [1303.6949] · doi:10.1103/PhysRevD.87.123005
[14] E.R. Harrison, 1970 Fluctuations at the threshold of classical cosmology, https://doi.org/10.1103/PhysRevD.1.2726 Phys. Rev. D 1 2726 · doi:10.1103/PhysRevD.1.2726
[15] C.G. Wynn-Williams, E.E. Becklin and G. Neugebauer, 1972 Infra-red sources in the H II region \(W_3\), https://doi.org/10.1093/mnras/160.1.1 Mon. Not. Roy. Astron. Soc.160 1 · doi:10.1093/mnras/160.1.1
[16] P.J.E. Peebles and J.T. Yu, 1970 Primeval adiabatic perturbation in an expanding universe, https://doi.org/10.1086/150713 Astrophys. J.162 815 · doi:10.1086/150713
[17] Planck collaboration, 2016 Planck 2015 results. XX. Constraints on inflation, https://doi.org/10.1051/0004-6361/201525898 Astron. Astrophys.594 A20 [1502.02114] · doi:10.1051/0004-6361/201525898
[18] J. Muir, S. Adhikari and D. Huterer, 2018 Covariance of CMB anomalies, https://doi.org/10.1103/PhysRevD.98.023521 Phys. Rev. D 98 023521 [1806.02354] · doi:10.1103/PhysRevD.98.023521
[19] L. Polastri, A. Gruppuso and P. Natoli, 2015 CMB low multipole alignments in the ΛCDM and dipolar models J. Cosmol. Astropart. Phys.2015 04 018 [1503.01611]
[20] D.J. Schwarz, C.J. Copi, D. Huterer and G.D. Starkman, 2016 CMB anomalies after Planck, https://doi.org/10.1088/0264-9381/33/18/184001 Class. Quant. Grav.33 184001 [1510.07929] · doi:10.1088/0264-9381/33/18/184001
[21] A.G. Riess, W.H. Press and R.P. Kirshner, 1995 Determining the motion of the local group using SN-Ia light curve shapes, https://doi.org/10.1086/187897 Astrophys. J.445 L91 [astro-ph/9412017] · doi:10.1086/187897
[22] M. Kamionkowski and L. Knox, 2003 Aspects of the cosmic microwave background dipole, https://doi.org/10.1103/PhysRevD.67.063001 Phys. Rev. D 67 063001 [astro-ph/0210165] · doi:10.1103/PhysRevD.67.063001
[23] Planck collaboration, 2014 Planck 2013 results. XXVII. Doppler boosting of the CMB: eppur si muove, https://doi.org/10.1051/0004-6361/201321556 Astron. Astrophys.571 A27 [1303.5087] · doi:10.1051/0004-6361/201321556
[24] S. Aiola, B. Wang, A. Kosowsky, T. Kahniashvili and H. Firouzjahi, 2015 Microwave background correlations from dipole anisotropy modulation, https://doi.org/10.1103/PhysRevD.92.063008 Phys. Rev. D 92 063008 [1506.04405] · doi:10.1103/PhysRevD.92.063008
[25] Planck collaboration, 2016 Planck 2015 results. IX. Diffuse component separation: CMB maps, https://doi.org/10.1051/0004-6361/201525936 Astron. Astrophys.594 A9 [1502.05956] · doi:10.1051/0004-6361/201525936
[26] A. Hajian and T. Souradeep, The cosmic microwave background bipolar power spectrum: basic formalism and applications, [astro-ph/0501001]
[27] D.A. Varshalovich, A.N. Moskalev and V.K. Khersonskii, 1988 Quantum theory of angular momentum, https://doi.org/10.1142/0270World Scientific, Singapore · doi:10.1142/0270
[28] S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, 1987 Hybrid Monte Carlo, https://doi.org/10.1016/0370-2693(87)91197-X Phys. Lett. B 195 216 · doi:10.1016/0370-2693(87)91197-X
[29] R.M. Neal, MCMC using Hamiltonian dynamics, [1206.1901] · Zbl 1229.65018
[30] S. Das, B.D. Wandelt and T. Souradeep, 2015 Bayesian inference on the sphere beyond statistical isotropy J. Cosmol. Astropart. Phys.2015 10 050 [1509.07137]
[31] S. Das, SIToolBox: a package for Bayesian estimation of statistical isotropy violation in the CMB sky, [1810.09470]
[32] S. Das, SI toolbox — full documentation, [1902.02328]
[33] S. Mukherjee and T. Souradeep, 2014 Statistically anisotropic Gaussian simulations of the CMB temperature field, https://doi.org/10.1103/PhysRevD.89.063013 Phys. Rev. D 89 063013 [1311.5837] · doi:10.1103/PhysRevD.89.063013
[34] C. Gordon, W. Hu, D. Huterer and T.M. Crawford, 2005 Spontaneous isotropy breaking: a mechanism for CMB multipole alignments, https://doi.org/10.1103/PhysRevD.72.103002 Phys. Rev. D 72 103002 [astro-ph/0509301] · doi:10.1103/PhysRevD.72.103002
[35] D.J. Fixsen, 2009 The temperature of the cosmic microwave background, https://doi.org/10.1088/0004-637X/707/2/916 Astrophys. J.707 916 [0911.1955] · doi:10.1088/0004-637X/707/2/916
[36] Planck collaboration, 2014 Planck 2013 results. IX. HFI spectral response, https://doi.org/10.1051/0004-6361/201321531 Astron. Astrophys.571 A9 [1303.5070] · doi:10.1051/0004-6361/201321531
[37] Y. Akrami et al., 2014 Power asymmetry in WMAP and Planck temperature sky maps as measured by a local variance estimator, https://doi.org/10.1088/2041-8205/784/2/L42 Astrophys. J.784 L42 [1402.0870] · doi:10.1088/2041-8205/784/2/L42
[38] D. Hanson and A. Lewis, 2009 Estimators for CMB statistical anisotropy, https://doi.org/10.1103/PhysRevD.80.063004 Phys. Rev. D 80 063004 [0908.0963] · doi:10.1103/PhysRevD.80.063004
[39] A. Hajian and T. Souradeep, 2003 Measuring statistical isotropy of the CMB anisotropy, https://doi.org/10.1086/379757 Astrophys. J.597 L5 [astro-ph/0308001] · doi:10.1086/379757
[40] A. Hajian, T. Souradeep and N.J. Cornish, 2004 Statistical isotropy of the WMAP data: a bipolar power spectrum analysis, https://doi.org/10.1086/427652 Astrophys. J.618 L63 [astro-ph/0406354] · doi:10.1086/427652
[41] T. Souradeep, A. Hajian and S. Basak, 2006 Measuring statistical isotropy of CMB anisotropy, https://doi.org/10.1016/j.newar.2006.09.010 New Astron. Rev.50 889 [astro-ph/0607577] · doi:10.1016/j.newar.2006.09.010
[42] F.K. Hansen, A.J. Banday, K.M. Gorski, H.K. Eriksen and P.B. Lilje, 2009 Power asymmetry in cosmic microwave background fluctuations from full sky to sub-degree scales: is the universe isotropic?, https://doi.org/10.1088/0004-637X/704/2/1448 Astrophys. J.704 1448 [0812.3795] · doi:10.1088/0004-637X/704/2/1448
[43] B.D. Wandelt, D.L. Larson and A. Lakshminarayanan, 2004 Global, exact cosmic microwave background data analysis using Gibbs sampling, https://doi.org/10.1103/PhysRevD.70.083511 Phys. Rev. D 70 083511 [astro-ph/0310080] · doi:10.1103/PhysRevD.70.083511
[44] H.K. Eriksen et al., 2004 Power spectrum estimation from high-resolution maps by Gibbs sampling, https://doi.org/10.1086/425219 Astrophys. J. Suppl.155 227 [astro-ph/0407028] · doi:10.1086/425219
[45] H.K. Eriksen, J.B. Jewell, C. Dickinson, A.J. Banday, K.M. Gorski and C.R. Lawrence, 2008 Joint Bayesian component separation and CMB power spectrum estimation, https://doi.org/10.1086/525277 Astrophys. J.676 10 [0709.1058] · doi:10.1086/525277
[46] A. Hajian, 2007 Efficient cosmological parameter estimation with Hamiltonian Monte Carlo, https://doi.org/10.1103/PhysRevD.75.083525 Phys. Rev. D 75 083525 [astro-ph/0608679] · doi:10.1103/PhysRevD.75.083525
[47] J.F. Taylor, M.A.J. Ashdown and M.P. Hobson, 2008 Fast optimal CMB power spectrum estimation with Hamiltonian sampling, https://doi.org/10.1111/j.1365-2966.2008.13630.x Mon. Not. Roy. Astron. Soc.389 1284 [0708.2989] · doi:10.1111/j.1365-2966.2008.13630.x
[48] J. Jasche, F.S. Kitaura, B.D. Wandelt and T.A. Ensslin, 2010 Bayesian power-spectrum inference for large scale structure data, https://doi.org/10.1111/j.1365-2966.2010.16610.x Mon. Not. Roy. Astron. Soc.406 60 [0911.2493] · doi:10.1111/j.1365-2966.2010.16610.x
[49] J. Jasche and B.D. Wandelt, 2013 Methods for Bayesian power spectrum inference with galaxy surveys, https://doi.org/10.1088/0004-637X/779/1/15 Astrophys. J.779 15 [1306.1821] · doi:10.1088/0004-637X/779/1/15
[50] J. Jasche and B.D. Wandelt, 2013 Bayesian physical reconstruction of initial conditions from large scale structure surveys, https://doi.org/10.1093/mnras/stt449 Mon. Not. Roy. Astron. Soc.432 894 [1203.3639] · doi:10.1093/mnras/stt449
[51] H. Wang, H.J. Mo, X. Yang and F.C. v.d. Bosch, 2013 Reconstructing the initial density field of the local universe: methods and tests with mock catalogs, https://doi.org/10.1088/0004-637X/772/1/63 Astrophys. J.772 63 [1301.1348] · doi:10.1088/0004-637X/772/1/63
[52] E. Anderes, B. Wandelt and G. Lavaux, 2015 Bayesian inference of CMB gravitational lensing, https://doi.org/10.1088/0004-637X/808/2/152 Astrophys. J.808 152 [1412.4079] · doi:10.1088/0004-637X/808/2/152
[53] K.M. Gorski et al., 2005 HEALPix — a framework for high resolution discretization and fast analysis of data distributed on the sphere, https://doi.org/10.1086/427976 Astrophys. J.622 759 [astro-ph/0409513] · doi:10.1086/427976
[54] Planck collaboration, 2016 Planck 2015 results. XII. Full focal plane simulations, https://doi.org/10.1051/0004-6361/201527103 Astron. Astrophys.594 A12 [1509.06348] · doi:10.1051/0004-6361/201527103
[55] A. Challinor and F. van Leeuwen, 2002 Peculiar velocity effects in high resolution microwave background experiments, https://doi.org/10.1103/PhysRevD.65.103001 Phys. Rev. D 65 103001 [astro-ph/0112457] · doi:10.1103/PhysRevD.65.103001
[56] L. Amendola, R. Catena, I. Masina, A. Notari, M. Quartin and C. Quercellini, 2011 Measuring our peculiar velocity on the CMB with high-multipole off-diagonal correlations J. Cosmol. Astropart. Phys.2011 07 027 [1008.1183]
[57] S. Mukherjee, A. De and T. Souradeep, 2014 Statistical isotropy violation of CMB polarization sky due to Lorentz boost, https://doi.org/10.1103/PhysRevD.89.083005 Phys. Rev. D 89 083005 [1309.3800] · doi:10.1103/PhysRevD.89.083005
[58] S. Mukherjee, P.K. Aluri, S. Das, S. Shaikh and T. Souradeep, 2016 Direction dependence of cosmological parameters due to cosmic hemispherical asymmetry J. Cosmol. Astropart. Phys.2016 06 042 [1510.00154]
[59] S. Mukherjee and B.D. Wandelt, 2018 Making maps of cosmological parameters J. Cosmol. Astropart. Phys.2018 01 042 [1712.01986]
[60] W.J. Percival and M.L. Brown, 2006 Likelihood methods for the combined analysis of CMB temperature and polarisation power spectra, https://doi.org/10.1111/j.1365-2966.2006.10910.x Mon. Not. Roy. Astron. Soc.372 1104 [astro-ph/0604547] · doi:10.1111/j.1365-2966.2006.10910.x
[61] E. Jones et al., 2001 SciPy: open source scientific tools for Python,
[62] Planck collaboration, 2016 Planck 2015 results. XI. CMB power spectra, likelihoods and robustness of parameters, https://doi.org/10.1051/0004-6361/201526926 Astron. Astrophys.594 A11 [1507.02704] · doi:10.1051/0004-6361/201526926
[63] J.M. Dickey, 1971 The weighted likelihood ratio, linear hypotheses on normal location parameters, https://doi.org/10.1214/aoms/1177693507 Ann. Math. Statist.42 204 · Zbl 0274.62020 · doi:10.1214/aoms/1177693507
[64] R. Trotta, 2008 Bayes in the sky: Bayesian inference and model selection in cosmology, https://doi.org/10.1080/00107510802066753 Contemp. Phys.49 71 [0803.4089] · doi:10.1080/00107510802066753
[65] S. Flender and S. Hotchkiss, 2013 The small scale power asymmetry in the cosmic microwave background J. Cosmol. Astropart. Phys.2013 09 033 [1307.6069]
[66] C. Dvorkin, H.V. Peiris and W. Hu, 2008 Testable polarization predictions for models of CMB isotropy anomalies, https://doi.org/10.1103/PhysRevD.77.063008 Phys. Rev. D 77 063008 [0711.2321] · doi:10.1103/PhysRevD.77.063008
[67] J.P. Zibin and D. Contreras, 2017 Testing physical models for dipolar asymmetry: from temperature to k space to lensing, https://doi.org/10.1103/PhysRevD.95.063011 Phys. Rev. D 95 063011 [1512.02618] · doi:10.1103/PhysRevD.95.063011
[68] D. Contreras, J.P. Zibin, D. Scott, A.J. Banday and K.M. Górski, 2017 Testing physical models for dipolar asymmetry with CMB polarization, https://doi.org/10.1103/PhysRevD.96.123522 Phys. Rev. D 96 123522 [1704.03143] · doi:10.1103/PhysRevD.96.123522
[69] S. Mukherjee and T. Souradeep, 2016 Litmus test for cosmic hemispherical asymmetry in the cosmic microwave background B-mode polarization, https://doi.org/10.1103/PhysRevLett.116.221301 Phys. Rev. Lett.116 221301 [1509.06736] · doi:10.1103/PhysRevLett.116.221301
[70] S. Ghosh and P. Jain, A pixel space method for testing dipole modulation in the CMB polarization, [1807.02359]
[71] S. Ghosh, P. Jain, G. Kashyap, R. Kothari, S. Nadkarni-Ghosh and P. Tiwari, 2016 Probing statistical isotropy of cosmological radio sources using SKA, https://doi.org/10.1007/s12036-016-9395-8 J. Astrophys. Astron.37 25 [1610.08176] · doi:10.1007/s12036-016-9395-8
[72] A. Lewis, A. Challinor and A. Lasenby, 2000 Efficient computation of CMB anisotropies in closed FRW models, https://doi.org/10.1086/309179 Astrophys. J.538 473 [astro-ph/9911177] · doi:10.1086/309179
[73] F. Pérez and B.E. Granger, 2007 IPython: a system for interactive scientific computing, https://doi.org/10.1109/mcse.2007.53 Comput. Sci. Eng.9 21 · doi:10.1109/mcse.2007.53
[74] J.D. Hunter, 2007 Matplotlib: a 2 D graphics environment, https://doi.org/10.1109/MCSE.2007.55 Comput. Sci. Eng.9 90 · doi:10.1109/MCSE.2007.55
[75] S. van der Walt, S.C. Colbert and G. Varoquaux, 2011 The NumPy array: a structure for efficient numerical computation, https://doi.org/10.1109/MCSE.2011.37 Comput. Sci. Eng.13 22 [1102.1523] · doi:10.1109/MCSE.2011.37
[76] D. Foreman-Mackey, 2016 corner.py: scatterplot matrices in Python, https://doi.org/10.21105/joss.00024 J. Open Source Softw.1 24 · doi:10.21105/joss.00024
[77] G.B. Rybicki and W.H. Press, 1992 Interpolation, realization and reconstruction of noisy, irregularly sampled data, https://doi.org/10.1086/171845 Astrophys. J.398 169 · doi:10.1086/171845
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.