×

Topological strings on non-commutative resolutions. (English) Zbl 1541.81095

Summary: In this paper we propose a definition of torsion refined Gopakumar-Vafa (GV) invariants for Calabi-Yau threefolds with terminal nodal singularities that do not admit Kähler crepant resolutions. Physically, the refinement takes into account the charge of five-dimensional BPS states under a discrete gauge symmetry in M-theory. We propose a mathematical definition of the invariants in terms of the geometry of all non-Kähler crepant resolutions taken together. The invariants are encoded in the A-model topological string partition functions associated to non-commutative (nc) resolutions of the Calabi-Yau. Our main example will be a singular degeneration of the generic Calabi-Yau double cover of \({\mathbb{P}}^3\) and leads to an enumerative interpretation of the topological string partition function of a hybrid Landau-Ginzburg model. Our results generalize a recent physical proposal made in the context of torus fibered Calabi-Yau manifolds by one of the authors and clarify the associated enumerative geometry.

MSC:

81T10 Model quantum field theories
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
14D06 Fibrations, degenerations in algebraic geometry
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14N10 Enumerative problems (combinatorial problems) in algebraic geometry

References:

[1] Hori, K.; Katz, S.; Vafa, C.; Thomas, R.; Pandharipande, R.; Klemm, A., Mirror Symmetry, Clay Mathematics Monographs, (2003), Providence: American Mathematical Society, Providence · Zbl 1044.14018
[2] Neitzke, A., Vafa, C.: Topological strings and their physical applications (2004) arXiv:hep-th/0410178 · Zbl 1132.81044
[3] Aspinwall, PS; Greene, BR; Morrison, DR, Calabi-Yau moduli space, mirror manifolds and space-time topology change in string theory, Nucl. Phys. B, 416, 414-480, (1994) · doi:10.1016/0550-3213(94)90321-2
[4] Witten, E., Phases of N=2 theories in two-dimensions, Nucl. Phys. B, 403, 159-222, (1993) · Zbl 0910.14020 · doi:10.1016/0550-3213(93)90033-L
[5] Reid, M., The moduli space of 3-folds with k=0 may nevertheless be irreducible, Math. Ann., 278, 1, 329-334, (1987) · Zbl 0649.14021 · doi:10.1007/BF01458074
[6] Schimannek, T., Modular curves, the Tate-Shafarevich group and Gopakumar-Vafa invariants with discrete charges, JHEP, 02, 007, (2022) · Zbl 1504.81102 · doi:10.1007/JHEP02(2022)007
[7] Kuznetsov, A., Lefschetz decompositions and categorical resolutions of singularities, Sel. Math. (N.S.), 13, 4, 661-696, (2008) · Zbl 1156.18006 · doi:10.1007/s00029-008-0052-1
[8] Thomas, R.P.: Notes on homological projective duality. In: Algebraic Geometry: Salt Lake City 2015. Proceedings of Symposia in Pure Mathematics, vol. 97, pp. 585-609. American Mathematical Society, Providence (2018) · Zbl 1451.14052
[9] Bondal, A., Orlov, D.: Derived categories of coherent sheaves (2002). doi:10.48550/ARXIV.MATH/0206295 · Zbl 0996.18007
[10] van den Bergh, M.: Non-commutative crepant resolutions. In: The Legacy of Niels Henrik Abel, pp. 749-770. Springer, Berlin (2004) · Zbl 1082.14005
[11] Van den Bergh, M.: Non-commutative crepant resolutions, an overview. arXiv:2207.09703 [math] · Zbl 1082.14005
[12] Roggenkamp, D.; Wendland, K., Limits and degenerations of unitary conformal field theories, Commun. Math. Phys., 251, 589-643, (2004) · Zbl 1078.81066 · doi:10.1007/s00220-004-1131-6
[13] Roggenkamp, D.; Wendland, K., Decoding the geometry of conformal field theories, Bulg. J. Phys., 35, 139-150, (2008) · Zbl 1202.81192
[14] Connes, A., Noncommutative Geometry, (1994), San Diego: Academic Press, San Diego · Zbl 0818.46076
[15] Seiberg, N.; Witten, E., String theory and noncommutative geometry, JHEP, 09, 032, (1999) · Zbl 0957.81085 · doi:10.1088/1126-6708/1999/09/032
[16] Connes, A.; Rieffel, MA, Yang-Mills for noncommutative two-tori, Contemp. Math., 62, 237-266, (1987) · Zbl 0633.46069 · doi:10.1090/conm/062/878383
[17] Connes, A.; Douglas, MR; Schwarz, AS, Noncommutative geometry and matrix theory: compactification on tori, JHEP, 02, 003, (1998) · Zbl 1018.81052 · doi:10.1088/1126-6708/1998/02/003
[18] Douglas, MR; Hull, CM, D-branes and the noncommutative torus, JHEP, 02, 008, (1998) · Zbl 0957.81017 · doi:10.1088/1126-6708/1998/02/008
[19] Schomerus, V., D-branes and deformation quantization, JHEP, 06, 030, (1999) · Zbl 0961.81066 · doi:10.1088/1126-6708/1999/06/030
[20] Kapustin, A., D-branes in a topologically nontrivial B field, Adv. Theor. Math. Phys., 4, 127-154, (2000) · Zbl 0992.81059 · doi:10.4310/ATMP.2000.v4.n1.a3
[21] Berenstein, D.; Jejjala, V.; Leigh, RG, Marginal and relevant deformations of N = 4 field theories and noncommutative moduli spaces of vacua, Nucl. Phys. B, 589, 196-248, (2000) · Zbl 1060.81606 · doi:10.1016/S0550-3213(00)00394-1
[22] Berenstein, D.; Leigh, RG, Noncommutative Calabi-Yau manifolds, Phys. Lett. B, 499, 207-214, (2001) · Zbl 0972.81188 · doi:10.1016/S0370-2693(01)00005-3
[23] Berenstein, D.; Leigh, RG, Resolution of stringy singularities by noncommutative algebras, JHEP, 06, 030, (2001) · doi:10.1088/1126-6708/2001/06/030
[24] Vafa, C.; Witten, E., On orbifolds with discrete torsion, J. Geom. Phys., 15, 189-214, (1995) · Zbl 0816.53053 · doi:10.1016/0393-0440(94)00048-9
[25] Douglas, M.R.: D-branes and discrete torsion (1998). arXiv:hep-th/9807235
[26] Sharpe, ER, Discrete torsion, Phys. Rev. D, 68, 126003, (2003) · doi:10.1103/PhysRevD.68.126003
[27] Aspinwall, PS; Morrison, DR; Gross, M., Stable singularities in string theory, Commun. Math. Phys., 178, 115-134, (1996) · Zbl 0854.53059 · doi:10.1007/BF02104911
[28] Căldăraru, A.H.: Derived categories of twisted sheaves on Calabi-Yau manifolds, p. 196. ProQuest LLC, Ann Arbor (2000). http://www.math.wisc.edu/ andreic/publications/ThesisSingleSpaced.pdf
[29] Căldăraru, A., Derived categories of twisted sheaves on elliptic threefolds, J. Reine Angew. Math., 544, 161-179, (2002) · Zbl 0995.14012 · doi:10.1515/crll.2002.022
[30] Addington, N.: The derived category of the intersection of four quadrics (2009). arXiv:0904.1764 [math.AG]
[31] Szendrői, B., Non-commutative Donaldson-Thomas invariants and the conifold, Geom. Topol., 12, 2, 1171-1202, (2008) · Zbl 1143.14034 · doi:10.2140/gt.2008.12.1171
[32] Căldăraru, A.; Distler, J.; Hellerman, S.; Pantev, T.; Sharpe, E., Non-birational twisted derived equivalences in abelian GLSMs, Commun. Math. Phys., 294, 605-645, (2010) · Zbl 1231.14035 · doi:10.1007/s00220-009-0974-2
[33] Buchweitz, R.-O., Eisenbud, D., Herzog, J.: Cohen-Macaulay modules on quadrics. In: Singularities, Representation of Algebras, and Vector Bundles (Lambrecht, 1985). Lecture Notes in Mathematics, vol. 1273, pp. 58-116. Springer, Berlin (1987). doi:10.1007/BFb0078838 · Zbl 0633.13008
[34] Kapustin, A.; Li, Y., D branes in Landau-Ginzburg models and algebraic geometry, JHEP, 12, 005, (2003) · doi:10.1088/1126-6708/2003/12/005
[35] Dyckerhoff, T., Compact generators in categories of matrix factorizations, Duke Math. J., 159, 2, 223-274, (2011) · Zbl 1252.18026 · doi:10.1215/00127094-1415869
[36] Teleman, C., Matrix factorisation of Morse-Bott functions, Duke Math. J., 169, 3, 533-549, (2020) · Zbl 1454.14053 · doi:10.1215/00127094-2019-0048
[37] Yoshino, Y.: Cohen-Macaulay Modules over Cohen-Macaulay rings. London Mathematical Society Lecture Note Series, vol. 146, p. 177. Cambridge University Press, Cambridge (1990). doi:10.1017/CBO9780511600685 · Zbl 0745.13003
[38] Kuznetsov, A., Homological projective duality, Publ. Math. Inst. Hautes Études Sci., 105, 157-220, (2007) · Zbl 1131.14017 · doi:10.1007/s10240-007-0006-8
[39] Kuznetsov, A., Derived categories of quadric fibrations and intersections of quadrics, Adv. Math., 218, 5, 1340-1369, (2008) · Zbl 1168.14012 · doi:10.1016/j.aim.2008.03.007
[40] Kuznetsov, A.: Semiorthogonal decompositions in algebraic geometry. In: Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, pp. 635-660. Kyung Moon Sa, Seoul (2014) · Zbl 1373.18009
[41] Borisov, LA; Li, Z., On Clifford double mirrors of toric complete intersections, Adv. Math., 328, 300-355, (2018) · Zbl 1427.14080 · doi:10.1016/j.aim.2018.01.017
[42] Hori, K.; Knapp, J., Linear sigma models with strongly coupled phases—one parameter models, JHEP, 11, 070, (2013) · doi:10.1007/JHEP11(2013)070
[43] Sharpe, E., Predictions for Gromov-Witten invariants of noncommutative resolutions, J. Geom. Phys., 74, 256-265, (2013) · Zbl 1321.14041 · doi:10.1016/j.geomphys.2013.08.012
[44] Candelas, P.; De La Ossa, XC; Green, PS; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, 359, 1, 21-74, (1991) · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[45] Hosono, S.; Klemm, A.; Theisen, S.; Yau, S-T, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys., 167, 301-350, (1995) · Zbl 0814.53056 · doi:10.1007/BF02100589
[46] Hosono, S.; Klemm, A.; Theisen, S.; Yau, S-T, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Nucl. Phys. B, 433, 501-554, (1995) · Zbl 1020.32508 · doi:10.1016/0550-3213(94)00440-P
[47] Huang, M-X; Klemm, A.; Quackenbush, S., Topological string theory on compact Calabi-Yau: modularity and boundary conditions, Lect. Notes Phys., 757, 45-102, (2009) · Zbl 1166.81358 · doi:10.1007/978-3-540-68030-7_3
[48] Gopakumar, R., Vafa, C.: M theory and topological strings. 1. (1998) arXiv:hep-th/9809187 · Zbl 0922.32015
[49] Gopakumar, R., Vafa, C.: M theory and topological strings. 2. (1998) arXiv:hep-th/9812127 · Zbl 0922.32015
[50] Ionel, E-N; Parker, T., The Gopakumar-Vafa formula for symplectic manifolds, Ann. Math., 187, 1, 1-64, (2018) · Zbl 1459.53078 · doi:10.4007/annals.2018.187.1.1
[51] Doan, A., Ionel, E.-N., Walpuski, T.: The Gopakumar-Vafa finiteness conjecture (2021). doi:10.48550/ARXIV.2103.08221. arXiv:2103.08221
[52] Katz, SH; Klemm, A.; Vafa, C., M theory, topological strings and spinning black holes, Adv. Theor. Math. Phys., 3, 1445-1537, (1999) · Zbl 0985.81081 · doi:10.4310/ATMP.1999.v3.n5.a6
[53] Maulik, D.; Toda, Y., Gopakumar-Vafa invariants via vanishing cycles, Invent. Math., 213, 3, 1017-1097, (2018) · Zbl 1400.14141 · doi:10.1007/s00222-018-0800-6
[54] Zhao, L.: Gopakumar-vafa invariant and MacDonald formula. Ph.D. Thesis, University of Illinois at Urbana-Champaign (2021)
[55] Dedushenko, M.; Witten, E., Some details on the Gopakumar-Vafa and Ooguri-Vafa formulas, Adv. Theor. Math. Phys., 20, 1-133, (2016) · Zbl 1355.81140 · doi:10.4310/ATMP.2016.v20.n1.a1
[56] Braun, V.; Kreuzer, M.; Ovrut, BA; Scheidegger, E., Worldsheet instantons, torsion curves, and non-perturbative superpotentials, Phys. Lett. B, 649, 334-341, (2007) · Zbl 1248.81156 · doi:10.1016/j.physletb.2007.03.066
[57] Braun, V.; Kreuzer, M.; Ovrut, BA; Scheidegger, E., Worldsheet instantons and torsion curves, part A: direct computation, JHEP, 10, 022, (2007) · doi:10.1088/1126-6708/2007/10/022
[58] Braun, V.; Kreuzer, M.; Ovrut, BA; Scheidegger, E., Worldsheet instantons and torsion curves. Part B: mirror symmetry, JHEP, 10, 023, (2007) · doi:10.1088/1126-6708/2007/10/023
[59] Dierigl, M., Oehlmann, P.-K., Schimannek, T.: The discrete Green-Schwarz mechanism in 6d F-theory and elliptic genera of non-critical strings (2022). arXiv:2212.04503 [hep-th] · Zbl 07690654
[60] Addington, NM; Segal, EP; Sharpe, E., D-brane probes, branched double covers, and noncommutative resolutions, Adv. Theor. Math. Phys., 18, 6, 1369-1436, (2014) · Zbl 1311.81202 · doi:10.4310/ATMP.2014.v18.n6.a5
[61] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys., 165, 311-428, (1994) · Zbl 0815.53082 · doi:10.1007/BF02099774
[62] One Parameter Calabi-Yau higher genus data (http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php)
[63] Van den Bergh, M., Three-dimensional flops and noncommutative rings, Duke Math. J., 122, 3, 423-455, (2004) · Zbl 1074.14013 · doi:10.1215/S0012-7094-04-12231-6
[64] Kuznetsov, A.: Homological projective duality for Grassmannians of lines. arXiv:math.AG/0610957
[65] Perry, A., Noncommutative homological projective duality, Adv. Math., 350, 877-972, (2019) · Zbl 1504.14006 · doi:10.1016/j.aim.2019.04.052
[66] Kuznetsov, A.; Perry, A., Categorical joins, J. Am. Math. Soc., 34, 2, 505-564, (2021) · Zbl 1484.14002 · doi:10.1090/jams/963
[67] Kuznetsov, A., Perry, A.: Categorical cones and quadratic homological projective duality. arXiv:1902.09824 · Zbl 1525.14023
[68] Kuznetsov, A.; Perry, A., Homological projective duality for quadrics, J. Algebraic Geom., 30, 3, 457-476, (2021) · Zbl 1485.14030 · doi:10.1090/jag/767
[69] Kuznetsov, A.: Semiorthogonal decompositions in families. arXiv:2111.00527 · Zbl 1373.18009
[70] Douglas, M.R., Moore, G.W.: D-branes, quivers, and ALE instantons (1996). arXiv:hep-th/9603167
[71] Leuschke, G.J.: In: Francisco, C., Klingler, L.C., Sather-Wagstaff, S., Vassilev, J.C. (eds.) Non-commutative Crepant Resolutions: Scenes From Categorical Geometry, pp. 293-364. De Gruyter, Berlin (2012). doi:10.1515/9783110250404.293
[72] Wemyss, M.: Lectures on Noncommutative Resolutions, pp. 1210-2564 (2012) arXiv:1210.2564 [math.RT]
[73] Klebanov, IR; Witten, E., Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B, 536, 199-218, (1998) · Zbl 0948.81619 · doi:10.1016/S0550-3213(98)00654-3
[74] Gopakumar, R.; Vafa, C., On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys., 3, 1415-1443, (1999) · Zbl 0972.81135 · doi:10.4310/ATMP.1999.v3.n5.a5
[75] Morrison, A.; Mozgovoy, S.; Nagao, K.; Szendrői, B., Motivic Donaldson-Thomas invariants of the conifold and the refined topological vertex, Adv. Math., 230, 4, 2065-2093, (2012) · Zbl 1257.14028 · doi:10.1016/j.aim.2012.03.030
[76] Aspinwall, PS; Morrison, DR, Quivers from matrix factorizations, Commun. Math. Phys., 313, 607-633, (2012) · Zbl 1250.81076 · doi:10.1007/s00220-012-1520-1
[77] Mozgovoy, S., Pioline, B.: Attractor invariants, brane tilings and crystals (2020). arXiv:2012.14358 [hep-th]
[78] Hori, K., Duality in two-dimensional (2,2) supersymmetric non-abelian gauge theories, JHEP, 10, 121, (2013) · Zbl 1342.81635 · doi:10.1007/JHEP10(2013)121
[79] Halverson, J.; Kumar, V.; Morrison, DR, New methods for characterizing phases of 2d supersymmetric gauge theories, JHEP, 09, 143, (2013) · doi:10.1007/JHEP09(2013)143
[80] Sharpe, E., A few Ricci-flat stacks as phases of exotic GLSM’s, Phys. Lett. B, 726, 390-395, (2013) · Zbl 1311.81184 · doi:10.1016/j.physletb.2013.08.013
[81] Sharpe, E., GLSM’s, gerbes, and Kuznetsov’s homological projective duality, J. Phys.: Conf. Ser., 462, 1, (2013) · doi:10.1088/1742-6596/462/1/012047
[82] Sharpe, E., Landau-Ginzburg models, gerbes, and Kuznetsov’s homological projective duality, Proc. Symp. Pure Math., 81, 237-249, (2010) · Zbl 1210.81091 · doi:10.1090/pspum/081/2681766
[83] Ballard, M.; Deliu, D.; Favero, D.; Isik, MU; Katzarkov, L., Homological projective duality via variation of geometric invariant theory quotients, J. Eur. Math. Soc., 19, 4, 1127-1158, (2017) · Zbl 1400.14048 · doi:10.4171/jems/689
[84] Hori, K., Knapp, J.: A pair of Calabi-Yau manifolds from a two parameter non-Abelian gauged linear sigma model (2016). arXiv:1612.06214 [hep-th]
[85] Wong, K., Two-dimensional gauge dynamics and the topology of singular determinantal varieties, JHEP, 03, 132, (2017) · Zbl 1377.81213 · doi:10.1007/JHEP03(2017)132
[86] Kapustka, M.; Rampazzo, M., Torelli problem for Calabi-Yau threefolds with GLSM description, Commun. Num. Theor. Phys., 13, 4, 725-761, (2019) · Zbl 1451.14024 · doi:10.4310/CNTP.2019.v13.n4.a2
[87] Parsian, H.; Sharpe, E.; Zou, H., (0,2) versions of exotic (2,2) GLSMs, Int. J. Mod. Phys. A, 33, 18-19, 1850113, (2018) · Zbl 1394.81147 · doi:10.1142/S0217751X18501130
[88] Chen, Z.; Pantev, T.; Sharpe, E., Landau-Ginzburg models for certain fiber products with curves, J. Geom. Phys., 137, 204-211, (2019) · Zbl 1434.53073 · doi:10.1016/j.geomphys.2018.11.012
[89] Chen, Z.; Guo, J.; Romo, M., A GLSM view on homological projective duality, Commun. Math. Phys., 394, 1, 355-407, (2022) · Zbl 1498.14107 · doi:10.1007/s00220-022-04401-1
[90] Guo, J., Romo, M.: Hybrid models for homological projective duals and noncommutative resolutions (2021). arXiv:2111.00025 [hep-th] · Zbl 1513.81108
[91] Hellerman, S.; Henriques, A.; Pantev, T.; Sharpe, E.; Ando, M., Cluster decomposition, T-duality, and gerby CFT’s, Adv. Theor. Math. Phys., 11, 5, 751-818, (2007) · Zbl 1156.81039 · doi:10.4310/ATMP.2007.v11.n5.a2
[92] Clemens, CH, Double solids, Adv. Math., 47, 2, 107-230, (1983) · Zbl 0509.14045 · doi:10.1016/0001-8708(83)90025-7
[93] Calabrese, JR; Thomas, RP, Derived equivalent Calabi-Yau threefolds from cubic fourfolds, Math. Ann., 365, 1-2, 155-172, (2016) · Zbl 1342.14036 · doi:10.1007/s00208-015-1260-6
[94] Borisov, LA; Li, Z., On Clifford double mirrors of toric complete intersections, Adv. Math., 328, 300-355, (2018) · Zbl 1427.14080 · doi:10.1016/j.aim.2018.01.017
[95] Kawamata, Y., Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. Math., 127, 1, 93-163, (1988) · Zbl 0651.14005 · doi:10.2307/1971417
[96] Namikawa, Y.; Steenbrink, JH, Global smoothing of Calabi-Yau threefolds, Invent. Math., 122, 2, 403-420, (1995) · Zbl 0861.14036 · doi:10.1007/BF01231450
[97] Arras, P.; Grassi, A.; Weigand, T., Terminal singularities, Milnor numbers, and matter in F-theory, J. Geom. Phys., 123, 71-97, (2018) · Zbl 1380.32022 · doi:10.1016/j.geomphys.2017.09.001
[98] Arras, P.; Grassi, A.; Weigand, T., Terminal singularities, Milnor numbers, and matter in f-theory, J. Geom. Phys., 123, 71-97, (2018) · Zbl 1380.32022 · doi:10.1016/j.geomphys.2017.09.001
[99] Werner, J.: Kleine Auflösungen Spezieller Dreidimensionaler Varietäten. Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 186, p. 119. Universität Bonn, Mathematisches Institut, Bonn. Dissertation, p. 1987. Rheinische Friedrich-Wilhelms-Universität, Bonn (1987) · Zbl 0657.14021
[100] Dolgachev, I.; Gross, M., Elliptic threefolds. I. Ogg-Shafarevich theory, J. Algebraic Geom., 3, 1, 39-80, (1994) · Zbl 0803.14021
[101] Braun, V.; Morrison, DR, F-theory on genus-one fibrations, JHEP, 08, 132, (2014) · Zbl 1333.81200 · doi:10.1007/JHEP08(2014)132
[102] Mayrhofer, C.; Palti, E.; Till, O.; Weigand, T., On discrete symmetries and torsion homology in F-theory, J. High Energy Phys., 2015, 6, 29, (2015) · Zbl 1388.81353 · doi:10.1007/JHEP06(2015)029
[103] Witten, E., Phase transitions in M theory and F theory, Nucl. Phys. B, 471, 195-216, (1996) · Zbl 1003.81537 · doi:10.1016/0550-3213(96)00212-X
[104] Freed, DS; Moore, GW; Segal, G., Heisenberg groups and noncommutative fluxes, Ann. Phys., 322, 236-285, (2007) · Zbl 1115.83031 · doi:10.1016/j.aop.2006.07.014
[105] Candelas, P.; Dale, AM; Lutken, CA; Schimmrigk, R., Complete intersection Calabi-Yau manifolds, Nucl. Phys. B, 298, 493, (1988) · doi:10.1016/0550-3213(88)90352-5
[106] Strominger, A., Massless black holes and conifolds in string theory, Nucl. Phys. B, 451, 96-108, (1995) · Zbl 0925.83071 · doi:10.1016/0550-3213(95)00287-3
[107] Friedman, R., Simultaneous resolution of threefold double points, Math. Ann., 274, 4, 671-689, (1986) · Zbl 0576.14013 · doi:10.1007/BF01458602
[108] Colliot-Thélène, J.-L., Skorobogatov, A.N.: The Brauer-Grothendieck Group. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 71, p. 453. Springer, Berlin (2021). doi:10.1007/978-3-030-74248-5 · Zbl 1490.14001
[109] Huang, M-X; Katz, S.; Klemm, A., Towards refining the topological strings on compact Calabi-Yau 3-folds, JHEP, 03, 266, (2021) · Zbl 1461.83082 · doi:10.1007/JHEP03(2021)266
[110] Li, A-M; Ruan, Y., Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math., 145, 1, 151-218, (2001) · Zbl 1062.53073 · doi:10.1007/s002220100146
[111] Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math., 142, 5, 1263-1285, (2006) · Zbl 1108.14046 · doi:10.1112/S0010437X06002302
[112] Batyrev, VV, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom., 3, 493-545, (1994) · Zbl 0829.14023
[113] Harris, J.; Tu, LW, On symmetric and skew-symmetric determinantal varieties, Topology, 23, 1, 71-84, (1984) · Zbl 0534.55010 · doi:10.1016/0040-9383(84)90026-0
[114] Green, PS; Hubsch, T., Connecting Moduli Spaces of Calabi-Yau threefolds, Commun. Math. Phys., 119, 431-441, (1988) · Zbl 0684.53077 · doi:10.1007/BF01218081
[115] Candelas, P.; Green, PS; Hubsch, T., Rolling Among Calabi-Yau Vacua, Nucl. Phys. B, 330, 49, (1990) · Zbl 0985.32502 · doi:10.1016/0550-3213(90)90302-T
[116] Addington, N.M.: Spinor sheaves and complete intersections of quadrics. Ph.D. Thesis, University of Wisconsin-Madison (2009)
[117] Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. Vol. I. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, p. 386. Springer, Berlin (1985). doi:10.1007/978-1-4757-5323-3 · Zbl 0559.14017
[118] de Jong, A.J.: A result of Gabber. https://www.math.columbia.edu/ dejong/papers/2-gabber.pdf
[119] Schröer, S., Topological methods for complex-analytic Brauer groups, Topology, 44, 5, 875-894, (2005) · Zbl 1083.14019 · doi:10.1016/j.top.2005.02.005
[120] Katz, SH; Sharpe, E., D-branes, open string vertex operators, and Ext groups, Adv. Theor. Math. Phys., 6, 979-1030, (2003) · doi:10.4310/ATMP.2002.v6.n6.a1
[121] Lawson, H.B. Jr., Michelsohn, M.-L.: Spin Geometry. Princeton Mathematical Series, vol. 38, p. 427. Princeton University Press, Princeton (1989) · Zbl 0688.57001
[122] Bryant, R.L., Griffiths, P.A.: Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle. In: Arithmetic and Geometry, Vol. II. Progress in Mathematics, vol. 36, pp. 77-102. Birkhäuser, Boston (1983) · Zbl 0543.14005
[123] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Holomorphic anomalies in topological field theories, Nucl. Phys. B, 405, 279-304, (1993) · doi:10.1016/0550-3213(93)90548-4
[124] Yamaguchi, S.; Yau, S-T, Topological string partition functions as polynomials, JHEP, 07, 047, (2004) · doi:10.1088/1126-6708/2004/07/047
[125] Grimm, TW; Klemm, A.; Marino, M.; Weiss, M., Direct integration of the topological string, JHEP, 08, 058, (2007) · Zbl 1326.81191 · doi:10.1088/1126-6708/2007/08/058
[126] Alim, M.; Lange, JD, Polynomial structure of the (open) topological string partition function, JHEP, 10, 045, (2007) · doi:10.1088/1126-6708/2007/10/045
[127] Ghoshal, D.; Vafa, C., C = 1 string as the topological theory of the conifold, Nucl. Phys. B, 453, 121-128, (1995) · Zbl 0925.81150 · doi:10.1016/0550-3213(95)00408-K
[128] Vafa, C., A stringy test of the fate of the conifold, Nucl. Phys. B, 447, 252-260, (1995) · Zbl 1009.81542 · doi:10.1016/0550-3213(95)00279-2
[129] Klemm, A.: The B-model approach to topological string theory on Calabi-Yau n-folds. In: B-model Gromov-Witten Theory. Trends in Mathematics, pp. 79-397. Birkhäuser, Cham (2018) · Zbl 1464.81005
[130] Antoniadis, I.; Gava, E.; Narain, KS; Taylor, TR, Topological amplitudes in string theory, Nucl. Phys. B, 413, 162-184, (1994) · Zbl 1007.81522 · doi:10.1016/0550-3213(94)90617-3
[131] Faber, C.; Pandharipande, R., Hodge integrals and Gromov-Witten theory, Invent. Math., 139, 1, 173-199, (2000) · Zbl 0960.14031 · doi:10.1007/s002229900028
[132] Alexandrov, S., Feyzbakhsh, S., Klemm, A., Pioline, B., Schimannek, T.: Quantum geometry from stability and modularity (work in progress)
[133] Kerr, M.; Pearlstein, GJ; Robles, C., Polarized relations on horizontal \({\rm SL}(2)\)’s, Doc. Math., 24, 1295-1360, (2019) · Zbl 1471.14026 · doi:10.4171/dm/705
[134] Grimm, TW; Palti, E.; Valenzuela, I., Infinite distances in field space and massless towers of states, JHEP, 08, 143, (2018) · Zbl 1396.81151 · doi:10.1007/JHEP08(2018)143
[135] Joshi, A.; Klemm, A., Swampland distance conjecture for one-parameter Calabi-Yau threefolds, JHEP, 08, 086, (2019) · Zbl 1421.83116 · doi:10.1007/JHEP08(2019)086
[136] van Straten, D.: Calabi-Yau operators. In: Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau Manifolds & Picard-Fuchs equations. Adv. Lect. Math. (ALM), vol. 42, pp. 401-451. Int. Press, Somerville (2018) · Zbl 1405.14027
[137] Bönisch, K., Klemm, A., Scheidegger, E., Zagier, D.: D-brane masses at special fibres of hypergeometric families of Calabi-Yau threefolds, modular forms, and periods (2022). arXiv:2203.09426 [hep-th]
[138] Aspinwall, P.S.: D-branes on Calabi-Yau manifolds. In: Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, pp. 1-152 (2004). doi:10.1142/9789812775108_0001
[139] Cota, CF; Klemm, A.; Schimannek, T., Topological strings on genus one fibered Calabi-Yau 3-folds and string dualities, JHEP, 11, 170, (2019) · Zbl 1429.83086 · doi:10.1007/JHEP11(2019)170
[140] Gerhardus, A.; Jockers, H., Quantum periods of Calabi-Yau fourfolds, Nucl. Phys. B, 913, 425-474, (2016) · Zbl 1349.81155 · doi:10.1016/j.nuclphysb.2016.09.021
[141] Iritani, H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math., 222, 3, 1016-1079, (2009) · Zbl 1190.14054 · doi:10.1016/j.aim.2009.05.016
[142] Halverson, J.; Jockers, H.; Lapan, JM; Morrison, DR, Perturbative corrections to Kaehler moduli spaces, Commun. Math. Phys., 333, 3, 1563-1584, (2015) · Zbl 1427.32011 · doi:10.1007/s00220-014-2157-z
[143] Knapp, J.; Romo, M.; Scheidegger, E., D-brane central charge and Landau-Ginzburg orbifolds, Commun. Math. Phys., 384, 1, 609-697, (2021) · Zbl 1469.81060 · doi:10.1007/s00220-021-04042-w
[144] Katz, S., Schimannek, T.: New non-commutative resolutions of determinantal Calabi-Yau threefolds from hybrid GLSM (2023). arXiv:2307.00047 [hep-th]
[145] Schubert, H.: Kalkül der Abzählenden Geometrie, p. 349. Springer, Berlin, Reprint of the 1879 original. With an introduction by Steven L. Kleiman (1979) · Zbl 0417.51008
[146] Pandharipande, R.; Thomas, RP, Stable pairs and BPS invariants, J. Am. Math. Soc., 23, 1, 267-297, (2010) · Zbl 1250.14035 · doi:10.1090/S0894-0347-09-00646-8
[147] Knapp, J., Scheidegger, E., Schimannek, T.: On genus one fibered Calabi-Yau threefolds with 5-sections (2021). arXiv:2107.05647 [hep-th]
[148] Harris, J.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 133, p. 328. Springer, New York (1995). A first course, Corrected reprint of the 1992 original
[149] Rocek, M., Modified Calabi-Yau manifolds with torsion, AMS/IP Stud. Adv. Math., 9, 421-429, (1998) · Zbl 0904.53043 · doi:10.1090/amsip/009/19
[150] Gurrieri, S.; Louis, J.; Micu, A.; Waldram, D., Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B, 654, 61-113, (2003) · Zbl 1010.81071 · doi:10.1016/S0550-3213(03)00045-2
[151] Hitchin, N., Generalized Calabi-Yau manifolds, Q. J. Math., 54, 281-308, (2003) · Zbl 1076.32019 · doi:10.1093/qjmath/54.3.281
[152] Strominger, A., Superstrings with torsion, Nucl. Phys. B, 274, 2, 253-284, (1986) · doi:10.1016/0550-3213(86)90286-5
[153] Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math., 142, 5, 1263-1285, (2006) · Zbl 1108.14046 · doi:10.1112/S0010437X06002302
[154] Fan, H.; Jarvis, T.; Ruan, Y., The Witten equation, mirror symmetry, and quantum singularity theory, Ann. Math. (2), 178, 1, 1-106, (2013) · Zbl 1310.32032 · doi:10.4007/annals.2013.178.1.1
[155] Chiodo, A.; Ruan, Y., Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math., 182, 1, 117-165, (2010) · Zbl 1197.14043 · doi:10.1007/s00222-010-0260-0
[156] Chiodo, A.; Iritani, H.; Ruan, Y., Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. ’IHÉS, 119, 1, 127-216, (2014) · Zbl 1298.14042 · doi:10.1007/s10240-013-0056-z
[157] Clader, E., Landau-Ginzburg/Calabi-Yau correspondence for the complete intersections \(X_{3,3}\) and \(X_{2,2,2,2}\), Adv. Math., 307, 1-52, (2017) · Zbl 1356.14048 · doi:10.1016/j.aim.2016.11.010
[158] Erkinger, D., Knapp, J.: On genus-0 invariants of Calabi-Yau hybrid models (2022). arXiv:2210.01226 [hep-th] · Zbl 07701886
[159] Faraggi, A.E., Nibbelink, S.G., Heredia, M.H.: The fate of discrete torsion on resolved heterotic Z2xZ2 orbifolds using (0,2) GLSMs (2022). arXiv:2211.01397 [hep-th] · Zbl 1520.83025
[160] Almkvist, G., van Enckevort, C., van Straten, D., Zudilin, W.: Tables of Calabi-Yau equations (2005). arXiv:math/0507430 [math.AG] · Zbl 1223.33007
[161] Katz, S., Lines on complete intersection threefolds with \(K=0\), Math. Z., 191, 2, 293-296, (1986) · Zbl 0563.14020 · doi:10.1007/BF01164033
[162] Addington, N.; Wray, A., Twisted Fourier-Mukai partners of Enriques surfaces, Math. Z., 297, 3-4, 1239-1247, (2021) · Zbl 1464.14021 · doi:10.1007/s00209-020-02555-z
[163] Hosono, S., BCOV ring and holomorphic anomaly equation, Adv. Stud. Pure Math., 59, 79, (2008) · Zbl 1216.14039
[164] Huang, M-X; Katz, S.; Klemm, A., Topological string on elliptic CY 3-folds and the ring of Jacobi forms, JHEP, 10, 125, (2015) · Zbl 1388.81219 · doi:10.1007/JHEP10(2015)125
[165] Kanazawa, A., Pfaffian Calabi-Yau threefolds and mirror symmetry, Commun. Num. Theor. Phys., 6, 661-696, (2012) · Zbl 1274.14047 · doi:10.4310/CNTP.2012.v6.n3.a3
[166] Tonoli, F., Construction of Calabi-Yau 3-folds in \({\mathbb{P} }^6\), J. Algebraic Geom., 13, 2, 209-232, (2004) · Zbl 1060.14060 · doi:10.1090/S1056-3911-03-00371-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.