×

Optimising subgrid-scale closures for spectral energy transfer in turbulent flows. (English) Zbl 1541.76049

A modeling framework for subgrid scales (SGS) in large eddy simulation is proposed for computing turbulent flows. Starting point is the local transport equation of spectral kinetic energy. Multiresolution analysis using orthogonal wavelets is then used to provide a local scale decomposition; the unresolved inter-energy transfer and the modeled SGS dissipation are evaluated. Thus an optimal SGS closure model is derived for a range of filter widths. Moreover, eddy viscosity closures are optimized for Smagorinsky and Vreman type models. For the dynamic Smagorinsky model a suboptimal behavior is shown for filter scales larger than the inertial subrange. A Clark-type model is likewise optimized. Examples for forced homogeneous isotropic turbulence illustrate the properties of the proposed models using a posteriori analysis.

MSC:

76F25 Turbulent transport, mixing
76F65 Direct numerical and large eddy simulation of turbulence
76M99 Basic methods in fluid mechanics
65T60 Numerical methods for wavelets

References:

[1] Adrian, R.1990Stochastic estimation of sub-grid scale mations. Appl. Mech. Rev.43 (5), S214-S218.
[2] Aluie, H.2013Scale decomposition in compressible turbulence. Physica D247 (1), 54-65. · Zbl 1308.76133
[3] Bardina, J., Ferziger, J. & Reynolds, W.C.1980 Improved subgrid-scale models for large-eddy simulation. Fluid and Plasma Dynamics Conference, Snowmass, Colorado. AIAA Paper 80-1357.
[4] Bassenne, M., Esmaily, M., Livescu, D., Moin, P. & Urzay, J.2019A dynamic spectrally enriched subgrid-scale model for preferential concentration in particle-laden turbulence. Intl J. Multiphase Flow116, 270-280.
[5] Bassenne, M., Moin, P. & Urzay, J.2018Wavelet multiresolution analysis of particle-laden turbulence. Phys. Rev. Fluids3 (8), 084304.
[6] Bassenne, M., Urzay, J., Park, G.I. & Moin, P.2016Constant-energetics physical-space forcing methods for improved convergence to homogeneous-isotropic turbulence with application to particle-laden flows. Phys. Fluids28 (3), 035114.
[7] Batchelor, G.K.1953The Theory of Homogeneous Turbulence. Cambridge University Press. · Zbl 0053.14404
[8] Van Der Bos, F. & Geurts, B.J.2005Commutator errors in the filtering approach to large-eddy simulation. Phys. Fluids17 (3), 035108. · Zbl 1187.76536
[9] Bose, S.T., Moin, P. & You, D.2010Grid-independent large-eddy simulation using explicit filtering. Phys. Fluids22 (10), 105103.
[10] Cardesa, J.I., Vela-Martín, A. & Jiménez, J.2017The turbulent cascade in five dimensions. Science357 (6353), 782-784. · Zbl 1404.76104
[11] Clark, R.A., Ferziger, J.H. & Reynolds, W.C.1979Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech.91 (1), 1-16. · Zbl 0394.76052
[12] De Stefano, G., Dymkoski, E. & Vasilyev, O.V.2022Localized dynamic kinetic-energy model for compressible wavelet-based adaptive large-eddy simulation. Phys. Rev. Fluids7 (5), 054604.
[13] De Stefano, G. & Vasilyev, O.V.2012A fully adaptive wavelet-based approach to homogeneous turbulence simulation. J. Fluid Mech.695, 149-172. · Zbl 1250.76099
[14] Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H.2008High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys.227 (15), 7125-7159. · Zbl 1201.76139
[15] Domaradzki, J.A.2021aLarge eddy simulations of high Reynolds number turbulence based on interscale energy transfer among resolved scales. Phys. Rev. Fluids6 (4), 044609.
[16] Domaradzki, J.A.2021bToward autonomous large eddy simulations of turbulence based on interscale energy transfer among resolved scales. Phys. Rev. Fluids6 (10), 104606.
[17] Domaradzki, J.A.2022Near-autonomous large eddy simulations of turbulence based on interscale energy transfer among resolved scales. Phys. Rev. Fluids7 (11), 114601.
[18] Dunn, D.C. & Morrison, J.F.2003Anisotropy and energy flux in wall turbulence. J. Fluid Mech.491, 353-378. · Zbl 1063.76569
[19] Duraisamy, K., Iaccarino, G. & Xiao, H.2019Turbulence modeling in the age of data. Annu. Rev. Fluid Mech.51, 357-377. · Zbl 1412.76040
[20] Freund, A. & Ferrante, A.2019Wavelet-spectral analysis of droplet-laden isotropic turbulence. J. Fluid Mech.875, 914-928. · Zbl 1419.76239
[21] Germano, M., Piomelli, U., Moin, P. & Cabot, W.H.1991A dynamic subgrid-scale eddy viscosity model. Phys. Fluids3 (7), 1760-1765. · Zbl 0825.76334
[22] Geurts, B.J.2009Analysis of errors occurring in large eddy simulation. Phil. Trans. R. Soc. Lond. A367 (1899), 2873-2883. · Zbl 1185.76722
[23] Ghate, A.S. & Lele, S.K.2020Gabor mode enrichment in large eddy simulations of turbulent flow. J. Fluid Mech.903, A13. · Zbl 1460.76541
[24] Ghosal, S.1996An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys.125 (1), 187-206. · Zbl 0848.76043
[25] Goldstein, D.E. & Vasilyev, O.V.2004Stochastic coherent adaptive large eddy simulation method. Phys. Fluids16 (7), 2497-2513. · Zbl 1186.76198
[26] Haselbacher, A. & Vasilyev, O.V.2003Commutative discrete filtering on unstructured grids based on least-squares techniques. J. Comput. Phys.187 (1), 197-211. · Zbl 1047.76581
[27] Jennewein, D.M., et al.2023 The Sol Supercomputer at Arizona State University. In Practice and Experience in Advanced Research Computing, PEARC ’23, pp. 296-301. Association for Computing Machinery.
[28] Kim, J., Bassenne, M., Towery, C.A.Z, Hamlington, P.E., Poludnenko, A.Y. & Urzay, J.2018Spatially localized multi-scale energy transfer in turbulent premixed combustion. J. Fluid Mech.848, 78-116. · Zbl 1406.76022
[29] King, R.N., Hamlington, P.E. & Dahm, W.J.A.2016Autonomic closure for turbulence simulations. Phys. Rev. E93 (3), 031301.
[30] Klein, M. & Germano, M.2020Analysis and modelling of the commutation error. Fluids6 (1), 15.
[31] Kravchenko, A.G. & Moin, P.1997On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comput. Phys.131 (2), 310-322. · Zbl 0872.76074
[32] Kulkarni, A.R., La Rocca, G., Veldhuis, L.L.M & Eitelberg, G.2022Sub-scale flight test model design: developments, challenges and opportunities. Prog. Aerosp. Sci.130, 100798.
[33] Langford, J.A. & Moser, R.D.1999Optimal LES formulations for isotropic turbulence. J. Fluid Mech.398, 321-346. · Zbl 0983.76043
[34] Langford, J.A. & Moser, R.D.2004Optimal large-eddy simulation results for isotropic turbulence. J. Fluid Mech.521, 273-294. · Zbl 1065.76117
[35] Lesieur, M. & Metais, O.1996New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech.28 (1), 45-82.
[36] Lilly, D.K.1967 The representation of small-scale turbulence in numerical simulation experiments. In Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, pp. 195-210.
[37] Lilly, D.K.1992A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids4 (3), 633-635.
[38] Lozano-Durán, A. & Bae, H.J.2023Machine learning building-block-flow wall model for large-eddy simulation. J. Fluid Mech.963, A35.
[39] Lund, T.S. & Novikov, E.A.1992 Parameterization of subgrid-scale stress by the velocity gradient tensor. In Annual Research Briefs, Center for Turbulence Research. Stanford University.
[40] Mallat, S.1999A Wavelet Tour of Signal Processing. Elsevier. · Zbl 0998.94510
[41] Mallat, S.G.1989A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal.11 (7), 674-693. · Zbl 0709.94650
[42] Meneveau, C.1991Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech.232, 469-520. · Zbl 0749.76033
[43] Meneveau, C.1994Statistics of turbulence subgrid-scale stresses: necessary conditions and experimental tests. Phys. Fluids6 (2), 815-833. · Zbl 0825.76279
[44] Meneveau, C. & Katz, J.2000Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech.32 (1), 1-32. · Zbl 0988.76044
[45] Meneveau, C., Lund, T.S. & Cabot, W.H.1996A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech.319, 353-385. · Zbl 0882.76029
[46] Mittal, R. & Moin, P.1997Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J.35 (8), 1415-1417. · Zbl 0900.76336
[47] Moin, P., Squires, K., Cabot, W. & Lee, S.1991A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids3 (11), 2746-2757. · Zbl 0753.76074
[48] Nabavi, M., Di Renzo, M. & Kim, J.2022Modulation of interphase, cross-scale momentum transfer of turbulent flows by preferentially concentrated inertial particles. Phys. Rev. Fluids7 (4), 044305.
[49] O’Brien, J., Towery, C.A.Z., Hamlington, P.E., Ihme, M., Poludnenko, A.Y. & Urzay, J.2017The cross-scale physical-space transfer of kinetic energy in turbulent premixed flames. Proc. Combust. Inst.36 (2), 1967-1975.
[50] Park, N., Lee, S., Lee, J. & Choi, H.2006A dynamic subgrid-scale eddy viscosity model with a global model coefficient. Phys. Fluids18 (12), 125109. · Zbl 1146.76500
[51] Passot, T. & Pouquet, A.1987Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech.181, 441-466. · Zbl 0633.76054
[52] Pettersson, K. & Rizzi, A.2008Aerodynamic scaling to free flight conditions: past and present. Prog. Aerosp. Sci.44 (4), 295-313.
[53] Piomelli, U., Rouhi, A. & Geurts, B.J.2015A grid-independent length scale for large-eddy simulations. J. Fluid Mech.766, 499-527.
[54] Pope, S.B.2001Turbulent Flows. Cambridge University Press.
[55] Pope, S.B.2004Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys.6 (1), 35.
[56] Rozema, W., Bae, H.J., Moin, P. & Verstappen, R.2015Minimum-dissipation models for large-eddy simulation. Phys. Fluids27 (8), 085107.
[57] Sabelnikov, V.A., Lipatnikov, A.N., Nikitin, N.V., Pérez, F.E.H. & Im, H.2023Backscatter of scalar variance in turbulent premixed flames. J. Fluid Mech.960, R2. · Zbl 1520.76045
[58] Sarghini, F., De Felice, G. & Santini, S.2003Neural networks based subgrid scale modeling in large eddy simulations. Comput. Fluids32 (1), 97-108. · Zbl 1009.76512
[59] Schneider, K. & Vasilyev, O.V.2010Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid Mech.42, 473-503. · Zbl 1345.76085
[60] Schumann, J.-E., Toosi, S. & Larsson, J.2020Assessment of grid anisotropy effects on large-eddy-simulation models with different length scales. AIAA J.58 (10), 4522-4533.
[61] Silvis, M.H., Remmerswaal, R.A. & Verstappen, R.2017Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows. Phys. Fluids29 (1), 015105.
[62] Smagorinsky, J.1963General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev.91 (3), 99-164.
[63] Vasilyev, O.V., Lund, T.S. & Moin, P.1998A general class of commutative filters for LES in complex geometries. J. Comput. Phys.146 (1), 82-104. · Zbl 0913.76072
[64] Vinuesa, R. & Brunton, S.L.2022Enhancing computational fluid dynamics with machine learning. Nat. Comput. Sci.2 (6), 358-366.
[65] Viré, A. & Knaepen, B.2009On discretization errors and subgrid scale model implementations in large eddy simulations. J. Comput. Phys.228 (22), 8203-8213. · Zbl 1422.76108
[66] Vreman, A.W.2004An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids16 (10), 3670-3681. · Zbl 1187.76543
[67] Vreman, B., Geurts, B. & Kuerten, H.1996Large-eddy simulation of the temporal mixing layer using the Clark model. Theor. Comput. Fluid Dyn.8 (4), 309-324. · Zbl 0898.76045
[68] Vreman, B., Geurts, B. & Kuerten, H.1997Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech.339, 357-390. · Zbl 0900.76369
[69] Xie, C., Yuan, Z. & Wang, J.2020Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence. Phys. Fluids32 (11), 115101.
[70] Xu, D., Wang, J., Yu, C. & Chen, S.2023Artificial-neural-network-based nonlinear algebraic models for large-eddy simulation of compressible wall-bounded turbulence. J. Fluid Mech.960, A4. · Zbl 1520.76044
[71] Yalla, G.R., Oliver, T.A. & Moser, R.D.2021Numerical dispersion effects on the energy cascade in large-eddy simulation. Phys. Rev. Fluids6 (9), L092601.
[72] Zhou, Z., He, G., Wang, S. & Jin, G.2019Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network. Comput. Fluids195, 104319. · Zbl 1466.76026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.