×

Effects of anisotropy on the geometry of tracer particle trajectories in turbulent flows. (English) Zbl 1541.76048

Summary: Using curvature and torsion to describe Lagrangian trajectories gives a full description of these as well as an insight into small and large time scales as temporal derivatives up to order 3 are involved. One might expect that the statistics of these observables depend on the geometry of the flow. Therefore, we calculated curvature and torsion probability density functions (PDFs) of experimental Lagrangian trajectories processed using the Shake-the-Box algorithm of turbulent von Kármán flow, Rayleigh-Bénard convection and a zero-pressure-gradient turbulent boundary layer over a flat plate. The results for the von Kármán flow compare well with experimental results for the curvature PDF and results obtained by numerical simulations of homogeneous and isotropic turbulence for the torsion PDF. Results for Rayleigh-Bénard convection agree with those measured for von Kármán flow, while results for the logarithmic layer within the boundary layer differ slightly. We provide a potential explanation for the latter. To detect and quantify the effect of anisotropy either resulting from a mean flow or large-scale coherent motions on the geometry or tracer particle trajectories, we introduce the curvature vector. We connect its statistics with those of velocity fluctuations and demonstrate that strong large-scale motion in a given spatial direction results in meandering rather than helical trajectories.

MSC:

76F25 Turbulent transport, mixing
76F55 Statistical turbulence modeling
76F05 Isotropic turbulence; homogeneous turbulence
76M35 Stochastic analysis applied to problems in fluid mechanics

References:

[1] Kim, K. C.; Adrian, R. J., Very large-scale motion in the outer layer, Phys. Fluids, 11, 417-422, 1999 · Zbl 1147.76430
[2] Adrian, R. J.; Meinhart, C. D.; Tomkins, C. D., Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 422, 1-54, 2000 · Zbl 0959.76503
[3] Guala, M.; Hommema, S.; Adrian, R., Large-scale and very-large-scale motions in turbulent pipe flow, J. Fluid Mech., 554, 521-542, 2006 · Zbl 1156.76316
[4] Hutchins, N.; Marusic, I., Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 579, 1-28, 2007 · Zbl 1113.76004
[5] Hutchins, N.; Chauhan, K.; Marusic, I.; Monty, J.; Klewicki, J., Towards Reconciling the Large-Scale Structure of Turbulent Boundary Layers in the Atmosphere and Laboratory, Bound.-Layer Meteorol., 145, 273-306, 2012
[6] Pandey, A.; Scheel, J.; Schumacher, J., Turbulent superstructures in Rayleigh-bénard convection, Nature Commun., 9, 2118, 2018
[7] Stevens, R. J.A. M.; Blass, A.; Zhu, X.; Verzicco, R.; Lohse, D., Turbulent thermal superstructures in Rayleigh-bénard convection, Phys. Rev. Fluids, 3, Article 041501 pp., 2018
[8] Schneide, C.; Pandey, A.; Padberg-Gehle, K.; Schumacher, J., Probing turbulent superstructures in Rayleigh-bénard convection by Lagrangian trajectory clusters, Phys. Rev. Fluids, 3, Article 113501 pp., 2018
[9] Krug, D.; Lohse, D.; Stevens, R. J.A. M., Coherence of temperature and velocity superstructures in turbulent Rayleigh-bénard flow, J. Fluid Mech., 887, A2, 2020 · Zbl 1460.76437
[10] Monty, J. P.; Stewart, J. A.; Williams, R. C.; Chong, M. S., Large-scale features in turbulent pipe and channel flows, J. Fluid Mech., 589, 147-156, 2007 · Zbl 1141.76316
[11] Hutchins, N.; Monty, J.; Ganapathisubramani, B.; Ng, H.; Marusic, I., Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer, J. Fluid Mech., 673, 255-285, 2011 · Zbl 1225.76161
[12] Ganapathisubramani, B.; Longmire, E., Characteristics of vortex packets in turbulent boundary layers, J. Fluid Mech., 478, 35-46, 2003 · Zbl 1032.76500
[13] Hutchins, N.; Marusic, I., Large-scale influences in near-wall turbulence, Philos. Trans. Royal Soc. A, 365, 647-664, 2007 · Zbl 1152.76421
[14] Bross, M.; Fuchs, T.; Kähler, C. J., Interaction of coherent flow structures in adverse pressure gradient turbulent boundary layers, J. Fluid Mech., 873, 287-321, 2019 · Zbl 1421.76115
[15] Braun, W.; De Lillo, F.; Eckhardt, B., Geometry of particle paths in turbulent flows, J. Turbul., 7, N62, 2006 · Zbl 1273.76245
[16] Xu, H.; Ouellette, N.; Bodenschatz, E., Curvature of Lagrangian trajectories in turbulence, Phys. Rev. Lett., 98, Article 050201 pp., 2007
[17] Scagliarini, A., Geometric properties of particle trajectories in turbulent flows, J. Turbul., 12, N25, 2011 · Zbl 1273.76248
[18] Alards, K. M.J.; Rajaei, H.; Del Castello, L.; Kunnen, R. P.J.; Toschi, F.; Clercx, H. J.H., Geometry of tracer trajectories in rotating turbulent flows, Phys. Rev. Fluids, 2, Article 044601 pp., 2017
[19] S. Gesemann, F. Huhn, D. Schanz, A. Schröder, From Particle Tracks to Velocity and Acceleration Fields Using B-Splines and Penalties, in: Proceedings of 18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2016.
[20] Schröder, A.; Schanz, D., 3D Lagrangian particle tracking in fluid mechanics, Annu. Rev. Fluid Mech., 55:1, 511-540, 2023
[21] Schanz, D.; Gesemann, S.; Schröder, A., Shake-the-box: Lagrangian particle tracking at high particle image densities, Exp. Fluids, 57, 70, 2016
[22] Wieneke, B., Iterative reconstruction of volumetric particle distribution, Meas. Sci. Technol, 24, Article 024008 pp., 2012
[23] Jahn, T.; Schanz, D.; Schröder, A., Advanced iterative particle reconstruction for Lagrangian particle tracking, Exp. Fluids, 62, 179, 2021
[24] A. Schröder, D. Schanz, S. Gesemann, F. Huhn, T. Buchwald, D.G. Paz, E. Bodenschatz, Measurements of the energy dissipation rate in homogeneous turbulence using dense 3D Lagrangian Particle Tracking and FlowFit, in: Proceedings of 20th International Symposium on Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, 2022.
[25] J. Bosbach, D. Schanz, P. Godbersen, A. Schröder, Spatially and temporally resolved measurements of turbulent Rayleigh-Bénard convection by Lagrangian particle tracking of long-lived helium-filled soap bubbles, in: Proceedings of 14th International Symposium on Particle Image Velocimetry - ISPIV 2021, Munich, Germany, 2021.
[26] Godbersen, P.; Bosbach, J.; Schanz, D.; Schröder, A., Beauty of turbulent convection: A particle tracking endeavor, Phys. Rev. Fluids, 6, Article 110509 pp., 2021
[27] D. Schanz, A. Schröder, M. Novara, R. Geisler, J. Agocs, F. Eich, M. Bross, C.J. Kähler, Large-scale volumetric characterization of a turbulent boundary layer flow, in: Proceedings of the 13th International Symposium on Particle Image Velocimetry - ISPIV 2019, Munich, Germany, 2019.
[28] Falkovich, G.; Xu, H.; Pumir, A.; Bodenschatz, E.; Biferale, L.; Boffetta, G.; Lanotte, A. S.; Toschi, F., On Lagrangian single-particle statistics, Phys. Fluids, 24, 2012, 055102
[29] Scarano, F.; Ghaemi, S.; Caridi, G. C.A.; Bosbach, J.; Dierksheide, U.; Sciacchitano, A., On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments, Exp. Fluids, 56, 42, 2015
[30] Mordant, N.; Crawford, A.; Bodenschatz, E., Three-dimensional structure of the Lagrangian acceleration in turbulent flows, Phys. Rev. Lett., 93, Article 214501 pp., 2004
[31] Yeung, P. K.; Pope, S. B., Lagrangian statistics from direct numerical simulations of isotropic turbulence, J. Fluid Mech., 207, 531-586, 1989
[32] Ni, R.; Huang, S.; Xia, K., Lagrangian acceleration measurements in convective thermal turbulence, J. Fluid Mech., 692, 395-419, 2012 · Zbl 1250.76012
[33] Stelzenmuller, N.; Polanco, J. I.; Vignal, L.; Vinkovic, I.; Mordant, N., Lagrangian acceleration statistics in a turbulent channel flow, Phys. Rev. Fluids, 2, Article 054602 pp., 2017
[34] Townsend, A. A., The measurement of double and triple correlation derivatives in isotropic turbulence, Math. Proc. Cambridge Philos. Soc., 43:4, 560-570, 1947
[35] Batchelor, G. K., The Theory of Homogeneous Turbulence, 1953, Cambridge University Press · Zbl 0053.14404
[36] Ouellette, N. T.; Xu, H.; Bourgoin, M.; Bodenschatz, E., Small-scale anisotropy in Lagrangian turbulence, New J. Phys., 8, 102, 2006
[37] Voth, G. A.; La Porta, A.; Crawford, A.; Bodenschatz, E.; Alexander, J., Measurement of particle accelerations in fully developed turbulence, J. Fluid Mech., 469, 121-160, 2002 · Zbl 1152.76315
[38] Bentkamp, L.; Lalescu, C. C.; Wilczek, M., Persistent accelerations disentangle Lagrangian turbulence, Nature Commun., 10, 3550, 2019
[39] Biferale, L.; Boffetta, G.; Celani, A.; Devenish, B.; Lanotte, A.; Toschi, F., Multifractal statistics of Lagrangian velocity and acceleration in turbulence, Phys. Rev. Lett., 93, Article 064502 pp., 2004
[40] Lawson, J. M.; Bodenschatz, E.; Lalescu, C. C.; Wilczek, M., Bias in particle tracking acceleration measurement, Exp. Fluids, 59, 172, 2018
[41] Mordant, N.; Lévêque, E.; Pinton, J., Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence, New J. Phys., 6, 116, 2004
[42] La Porta, A.; Voth, G. A.; Crawford, A. M.; Alexander, J.; Bodenschatz, E., Fluid particle accelerations in fully developed turbulence, Nature, 409, 1017-1019, 2001
[43] Lalescu, C. C.; Wilczek, M., Acceleration statistics of tracer particles in filtered turbulent fields, J. Fluid Mech., 847, R2, 2018 · Zbl 1404.76133
[44] Hengster, Y.; Linkmann, M., Lagrangian curvature statistics from Gaussian subensembles in turbulence, 2023, in preparation
[45] Biferale, L.; Toschi, F., Joint statistics of acceleration and vorticity in fully developed turbulence, J. Turbul., 6, N40, 2005
[46] Schumacher, J., Lagrangian studies in convective turbulence, Phys. Rev. E, 79, Article 056301 pp., 2009
[47] Bross, M.; Schanz, D.; Novara, M.; Eich, F.; Schröder, A.; Kähler, C. J., Turbulent superstructure statistics in a turbulent boundary layer with pressure gradients, Eur. J. Mech. B Fluids, 101, 209-218, 2023 · Zbl 1522.76037
[48] Kolmogorov, A. N., Dissipation of Energy in Locally Isotropic Turbulence, Akadem. Nauk SSSR Doklady, 32, 16, 1941 · Zbl 0063.03292
[49] Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers, Akad. Nauk SSSR Doklady, 30, 301-305, 1941 · JFM 67.0850.06
[50] Heisenberg, W., Zur statistischen Theorie der Turbulenz, Z. Phys., 124, 628-657, 1948 · Zbl 0034.26903
[51] Yaglom, A. M., On the acceleration field in a turbulent flow, C. R. Akad. URSS, 67:5, 795-798, 1949 · Zbl 0033.31703
[52] La Porta, A.; Voth, G. A.; Crawford, A.; Alexander, J.; Bodenschatz, E., Fluid particle accelerations in fully developed turbulence, Nature, 409, 1017-1019, 2001
[53] Ouellette, N. T.; Xu, H.; Bourgoin, M.; Bodenschatz, E., Small-scale anisotropy in Lagrangian turbulence, New J. Phys., 8, 102, 2006
[54] Huck, P. D.; Machicoane, N.; Volk, R., Production and dissipation of turbulent fluctuations close to a stagnation point, Phys. Rev. Fluids, 2, Article 084601 pp., 2017
[55] Huck, P. D.; Machicoane, N.; Volk, R., Lagrangian acceleration timescales in anisotropic turbulence, Phys. Rev. Fluids, 4, Article 064606 pp., 2019
[56] Schumann, U., Realizability of Reynolds-stress turbulence models, Phys. Fluids, 20, 721-725, 1977 · Zbl 0362.76099
[57] Lumley, J. L.; Newman, G. R., The return to isotropy of homogenous turbulence, J. Fluid Mech., 82, 161-178, 1977 · Zbl 0368.76055
[58] Pope, S. B., Turbulent Flows, 2000, Cambridge University Press · Zbl 0966.76002
[59] Risius, S.; Xu, H.; Di Lorenzo, F.; Xi, H.; Siebert, H.; Shaw, R. A.; Bodenschatz, E., Schneefernerhaus as a mountain research station for clouds and turbulence, Atmos. Meas. Tech., 8, 3209-3218, 2015
[60] Kunnen, R. P.J.; Geurts, B. J.; Clerx, H. J.H., Experimental and numerical investigation of turbulent convection in a rotating cylinder, J. Fluid Mech., 642, 445-476, 2010 · Zbl 1183.76763
[61] Kim, J.; Moin, P.; Moser, R., Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech., 177, 133-166, 1987 · Zbl 0616.76071
[62] Kevin, K.; Monty, J.; Hutchins, N., The meandering behaviour of large-scale structures in turbulent boundary layers, J. Fluid Mech., 865, R1, 2019 · Zbl 1429.76061
[63] Vieweg, P. P.; Schneide, C.; Padberg-Gehle, K.; Schumacher, J., Lagrangian heat transport in turbulent three-dimensional convection, Phys. Rev. Fluids, 6, Article L041501 pp., 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.