×

Piecewise acoustic source imaging with unknown speed of sound using a level-set method. (English) Zbl 1541.65137

Summary: We investigate the following inverse problem: starting from the acoustic wave equation, reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound. When the amplitudes of the source are known a priori, we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities. When the singularities of the source are known a priori, we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes. The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry. The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
15A23 Factorization of matrices
65F50 Computational methods for sparse matrices
65R10 Numerical methods for integral transforms

Software:

k-Wave
Full Text: DOI

References:

[1] Acosta, Sebastian, Recovery of pressure and wave speed for photoacoustic imaging under a condition of relative uncertainty, Inverse Problem, 35, 11, 2019 · Zbl 1458.94009
[2] Agranovsky, Mark; Kuchment, Peter, Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed, Inverse Problems, 23, 5, 2089, 2007 · Zbl 1126.35087
[3] Arridge, S.R., Betcke, M.M., Cox, B.T., Lucka, F., Treeby, B.E.: On the adjoint operator in photoacoustic tomography. Inverse Problems 32(11), 115012 (2016) · Zbl 1354.35165
[4] Bao, Gang; Lin, Junshan; Triki, Faouzi, A multi-frequency inverse source problem, J. Differential Equations, 249, 12, 3443-3465, 2010 · Zbl 1205.35336
[5] Belhachmi, Zakaria; Glatz, Thomas; Scherzer, Otmar, A direct method for photoacoustic tomography with inhomogeneous sound speed, Inverse Problems, 32, 4, 2016 · Zbl 1382.65289
[6] Chung, E.; Lam, CY; Qian, J., A Neumann series based method for photoacoustic tomography on irregular domains, Contemporary Mathematics, 615, 89-104, 2014
[7] Colton, DL; Kress, R.; Kress, R., Inverse acoustic and electromagnetic scattering theory, 1998, New York: Springer, New York · Zbl 0893.35138
[8] Finch, D.; Hickmann, KS, Transmission eigenvalues and thermoacoustic tomography, Inverse Problems, 29, 10, 2013 · Zbl 1286.35182
[9] Glowinski, R.; Leung, S.; Qian, J., A penalization-regularization-operator splitting method for Eikonal-based traveltime tomography, SIAM J. Imaging Sci., 8, 1263-1292, 2015 · Zbl 1325.65092
[10] Herglotz, G.: Über die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen, volume 44. Teubner (1914) · JFM 45.0581.01
[11] Hristova, Yulia; Kuchment, Peter; Nguyen, Linh, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media, Inverse Problems, 24, 5, 2008 · Zbl 1180.35563
[12] Huang, C.; Wang, K.; Schoonover, RW; Wang, LV; Anastasio, MA, Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation, IEEE Transact. comput. imaging, 2, 2, 136-149, 2016
[13] Huang, G.; Qian, J., Analysis of Kantonovich-Rubinstein norm and its application to inverse gravity problem, SIAM J. Imaging Sci., 12, 3, 1528-1560, 2019 · Zbl 07198480
[14] Huang, G.; Zhang, X.; Qian, J., Kantorovich-Rubinstein misfit for inverting gravity-gradient data by the level-set method, Geophysics, 84, 5, G55-G73, 2019
[15] Isakov, V.: Inverse Source Problems. American Mathematical Society, Providence, Rhode Island (1990) · Zbl 0721.31002
[16] Isakov, V., Inverse problems for partial differential equations, 2006, New York: Springer, New York · Zbl 1092.35001
[17] Isakov, V.; Leung, S.; Qian, J., A fast local level set method for inverse gravimetry, Comm. Comput. Phys., 10, 1044-1070, 2011 · Zbl 1373.86012
[18] Isakov, V.; Leung, S.; Qian, J., A three-dimensional inverse gravimetry problem for ice with snow caps, Inverse Prob. Imaging, 7, 523-544, 2013 · Zbl 1264.86012
[19] Ishii, M.; Shearer, PM; Houston, H.; Vidale, JE, Extent, duration and speed of the 2004 sumatra-andaman earthquake imaged by the hi-net array, Nature, 435, 7044, 933-936, 2005
[20] Johnson, R.L., Scott, M.P., Jeffrey, R.G., Chen, Z., Bennett, L., Vandenborn, C., Tcherkashnev, S.: Evaluating hydraulic fracture effectiveness in a coal seam gas reservoir from surface tiltmeter and microseismic monitoring. In: SPE Annual Technical Conference and Exhibition. OnePetro (2010)
[21] Knox, Christina; Moradifam, Amir, Determining both the source of a wave and its speed in a medium from boundary measurements, Inverse Problems, 36, 2, 2020 · Zbl 1458.35480
[22] Leung, S.; Qian, J., An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals, Comm. Math. Sci., 4, 249-266, 2006 · Zbl 1096.65062
[23] Leung, S.; Qian, J.; Hu, J., A level-set adjoint-state method for transmission traveltime tomography in irregular domains, SIAM J. Sci. Comput., 43, A2352-A2380, 2021 · Zbl 1469.78015
[24] Li, W.; Leung, S.; Qian, J., A level set-adjoint state method for crosswell transmission-reflection traveltime tomography, Geophys. J. Internat., 199, 348-367, 2014
[25] Li, W.; Lu, W.; Qian, J., A level set method for imaging salt structures using gravity data, Geophysics, 81, 2, G35-G51, 2016
[26] Li, W.; Lu, W.; Qian, J.; Li, Y., A multiple level set method for three-dimensional inversion of magnetic data, Geophysics, 82, 5, J61-J81, 2017
[27] Li, W.; Qian, J., Joint inversion of gravity and traveltime data using a level-set based structural parameterization, Geophysics, 81, 6, G107-G119, 2016
[28] Li, W.; Qian, J., Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods, Inverse Prob. Imaging, 15, 387-413, 2021 · Zbl 1482.65173
[29] Li, W.; Qian, J., Kantorovich-Rubinstein metric based level-set methods for inverting modulus of gravity-force data, Inverse Prob. Imaging, 16, 1643-1667, 2022 · Zbl 1511.65116
[30] Liu, Hongyu; Uhlmann, Gunther, Determining both sound speed and internal source in thermo- and photo-acoustic tomography, Inverse Problems, 31, 10, 2015 · Zbl 1328.35316
[31] Lu, W.; Leung, S.; Qian, J., An improved fast local level set method for three-dimensional inverse gravimetry, Inverse Prob. Imaging, 9, 479-509, 2015 · Zbl 1369.65134
[32] Lu, W.; Qian, J., A local level set method for three-dimensional inversion of gravity gradiometry data, Geophysics, 80, G35-G51, 2015
[33] Matthews, TP; Poudel, J.; Li, L.; Wang, LV; Anastasio, MA, Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography, SIAM J Imaging Sci, 11, 2, 1560-1588, 2018 · Zbl 1401.92129
[34] Osher, SJ; Fedkiw, R., Level set methods and dynamic implicit surfaces, 2003, New York: Springer, New York · Zbl 1026.76001
[35] Osher, SJ; Sethian, JA, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49, 1988 · Zbl 0659.65132
[36] Osher, SJ; Shu, C-W, High-order Essentially NonOscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Analy., 28, 907-922, 1991 · Zbl 0736.65066
[37] Qian, Jianliang; Stefanov, Plamen; Uhlmann, Gunther; Zhao, Hongkai, An efficient Neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed, SIAM J. Imag. Sci., 4, 3, 850-883, 2011 · Zbl 1279.94029
[38] Qin, S., Yang, Y., Wang, R.: Source independent velocity recovery using imaginary FWI. In: 82nd EAGE Annual Conference & Exhibition, vol. 2021, pp. 1-5. European Association of Geoscientists & Engineers (2021)
[39] Shan, H., Wiedeman, C., Wang, G., Yang, Y.: Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach. In: Novel Optical Systems, Methods, and Applications XXII, vol. 11105, pp. 1110504. International Society for Optics and Photonics (2019)
[40] Sharan, S.; Wang, R.; Herrmann, FJ, Fast sparsity-promoting microseismic source estimation, Geophys. J. Int., 216, 1, 164-181, 2019
[41] Stefanov, Plamen; Uhlmann, Gunther, Thermoacoustic tomography with variable sound speed, Inverse Problems, 25, 7, 2009 · Zbl 1177.35256
[42] Stefanov, P., Uhlmann, G.: Instability of the linearized problem in multiwave tomography of recovery both the source and the speed. arXiv:1211.6217 (2012) · Zbl 1292.35337
[43] Sun, J., Xue, Z., Zhu, T., Fomel, S., Nakata, N.: Full-waveform inversion of passive seismic data for sources and velocities. In: SEG Technical Program Expanded Abstracts 2016, pp. 1405-1410. Society of Exploration Geophysicists (2016)
[44] Sussman, M.; Smereka, P.; Osher, SJ, A level set approach for computing solutions to incompressible two-phase flows, J. Comput. Phys., 114, 146-159, 1994 · Zbl 0808.76077
[45] Tick, Jenni; Pulkkinen, Aki; Tarvainen, Tanja, Modelling of errors due to speed of sound variations in photoacoustic tomography using a Bayesian framework, Biomed. Phys. Eng. Express, 6, 1, 2019
[46] Treeby, BE; Cox, BT, k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Optics, 15, 2, 2010
[47] van den Doel, K.; Ascher, UM; Leitao, A., Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems, J. Sci. Comput., 43, 1, 44-66, 2010 · Zbl 1203.65087
[48] Wang, Hanchen; Alkhalifah, Tariq, Microseismic imaging using a source function independent full waveform inversion method, Geophys. J. Int., 214, 1, 46-57, 2018
[49] Wang, K., Anastasio, M.A.: Photoacoustic and thermoacoustic tomography: image formation principles. In: Handbook of Mathematical Methods in Imaging. Springer, New York (2015) · Zbl 1331.78024
[50] Wang, LV; Wu, H-I, Biomedical optics: principles and Imaging, 2007, New Jersey: Wiley-Interscience, New Jersey
[51] Xia, J.; Yao, J.; Wang, LV, Photoacoustic tomography: principles and advances, Electromagnetic Waves (Cambridge Mass.), 147, 1-22, 2014
[52] Xu, M.; Wang, LV, Photoacoustic imaging in biomedicine, Rev. Sci. Instrum., 77, 4, 2006
[53] Ye, M.; Cao, M.; Feng, T.; Yuan, J.; Cheng, Q.; Liu, X.; Xu, G.; Wang, X., Automatic speed of sound correction with photoacoustic image reconstruction, Photons Plus Ultrasound, 9708, 601-606, 2016
[54] Yoon, C.; Kang, J.; Han, S.; Yoo, Y.; Song, T-K; Chang, J., Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation, Optics Express, 20, 3, 3082-3090, 2012
[55] Zhang, J., Wang, K., Yang, Y., Anastasio., M.A.: Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm. In: Photons Plus Ultrasound: Imaging and Sensing 2008: the Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6856, pp. 68561F. International Society for Optics and Photonics (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.