×

Computing algebraic degrees of phylogenetic varieties. (English) Zbl 1541.62400

Summary: Phylogenetic varieties are algebraic varieties specified by a statistical model describing the evolution of biological sequences along a tree. Its understanding is an important problem in algebraic statistics, particularly in the context of phylogeny reconstruction. In the broader area of algebra statistics, there have been important theoretical advances in computing certain invariants associated with algebraic varieties arising in applications. Beyond the dimension and degree of a variety, one is interested in computing other algebraic degrees, such as the maximum likelihood degree and the Euclidean distance degree. Despite these efforts, the current literature lacks explicit computations of these invariants for the particular case of phylogenetic varieties. In our work, we fill this gap by computing these invariants for phylogenetic varieties arising from the simplest group-based models of nucleotide substitution Cavender-Farris-Neyman model, Jukes-Cantor model, Kimura 2-parameter model and the Kimura 3-parameter model on small phylogenetic trees with at most 5 leaves.

MSC:

62R01 Algebraic statistics
65H10 Numerical computation of solutions to systems of equations
92D15 Problems related to evolution
14Q30 Computational real algebraic geometry

References:

[1] 10.1016/j.mbs.2003.08.004 · Zbl 1031.92019 · doi:10.1016/j.mbs.2003.08.004
[2] 10.1155/S1687120004020283 · Zbl 1077.92015 · doi:10.1155/S1687120004020283
[3] 10.2140/jsag.2021.11.1 · Zbl 1483.13002 · doi:10.2140/jsag.2021.11.1
[4] 10.1145/3452143.3465545 · doi:10.1145/3452143.3465545
[5] 10.1137/141000671 · Zbl 1356.68030 · doi:10.1137/141000671
[6] 10.1006/jsco.1996.0125 · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[7] 10.1007/978-3-319-96418-8_54 · Zbl 1396.14003 · doi:10.1007/978-3-319-96418-8_54
[8] 10.1145/3580277 · Zbl 07908573 · doi:10.1145/3580277
[9] 10.1017/CBO9780511610684.019 · Zbl 1376.62075 · doi:10.1017/CBO9780511610684.019
[10] 10.1007/s13348-014-0120-0 · Zbl 1332.92040 · doi:10.1007/s13348-014-0120-0
[11] 10.1016/j.jsc.2020.09.003 · Zbl 1468.92045 · doi:10.1016/j.jsc.2020.09.003
[12] 10.1353/ajm.2006.0019 · Zbl 1123.13019 · doi:10.1353/ajm.2006.0019
[13] 10.1016/S0025-5564(96)00075-2 · Zbl 1059.92504 · doi:10.1016/S0025-5564(96)00075-2
[14] 10.1007/s10208-014-9240-x · Zbl 1370.51020 · doi:10.1007/s10208-014-9240-x
[15] 10.1214/aos/1176349030 · Zbl 0772.92012 · doi:10.1214/aos/1176349030
[16] ; Felsenstein, J., Inferring phylogenies, 2003
[17] 10.1137/17M1134238 · Zbl 1392.92059 · doi:10.1137/17M1134238
[18] 10.2307/2992397 · doi:10.2307/2992397
[19] 10.2307/2992396 · doi:10.2307/2992396
[20] 10.1007/s10208-004-0156-8 · Zbl 1097.13035 · doi:10.1007/s10208-004-0156-8
[21] 10.2307/2153370 · Zbl 0849.65030 · doi:10.2307/2153370
[22] 10.1016/B978-1-4832-3211-9.50009-7 · doi:10.1016/B978-1-4832-3211-9.50009-7
[23] 10.1007/BF01731581 · doi:10.1007/BF01731581
[24] 10.1073/pnas.78.1.454 · Zbl 0511.92013 · doi:10.1073/pnas.78.1.454
[25] 10.1016/j.jalgebra.2011.05.016 · Zbl 1251.14040 · doi:10.1016/j.jalgebra.2011.05.016
[26] 10.1017/CBO9780511610684 · Zbl 1108.62118 · doi:10.1017/CBO9780511610684
[27] ; Semple, Charles; Steel, Mike, Phylogenetics. Oxford Lecture Series in Mathematics and its Applications, 24, 2003 · Zbl 1043.92026
[28] 10.1089/cmb.2005.12.204 · Zbl 1391.13058 · doi:10.1089/cmb.2005.12.204
[29] 10.1090/gsm/194 · Zbl 1408.62004 · doi:10.1090/gsm/194
[30] 10.1006/aama.1993.1011 · Zbl 0794.05014 · doi:10.1006/aama.1993.1011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.