×

Simple factor realized stochastic volatility models. (English) Zbl 1541.62280

Summary: This paper considers the use of multiple noisy daily realized variance measures to extract a denoised latent variance process. The class of stochastic volatility models used for signal extraction has the important feature that they can be written as a linear state space model. As a result, prediction of the denoised latent variance and likelihood evaluation can be carried out efficiently using the Kalman filter. This is in contrast to stochastic models that jointly model the return and variance, which require computationally expensive nonlinear filtering for prediction and inference. The gain from using multiple noisy daily variance measures is examined empirically for the S&P 500 index using daily OHLC (open-high-low-close) data.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M20 Inference from stochastic processes and prediction
Full Text: DOI

References:

[1] Aït-Sahalia, Y., and J. Jacod. 2012. “Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data.” Journal of Economic Literature 50: 1007-50. doi:10.1257/jel.50.4.1007. · doi:10.1257/jel.50.4.1007
[2] Aït-Sahalia, Y., and P. A. Mykland. 2009. “Estimating Volatility in the Presence of Market Microstructure Noise: A Review of the Theory and Practical Considerations.” In Handbook of Financial Time Series, 577-98. Springer. · Zbl 1179.62149
[3] Andersen, T. G., P. F. Christoffersen, T. Bollerslev, and F. X. Diebold. 2013. “Financial Risk Measurement for Financial Risk Management.” In Handbook of the Economics of Finance, 1127-220. Elsevier. Chap. 17.
[4] Andersen, T. G., T. Bollerslev, and F. X. Diebold. 2007. “Roughing it up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility.” The Review of Economics and Statistics 89: 701-20. doi:10.1162/rest.89.4.701. · doi:10.1162/rest.89.4.701
[5] Andersen, T. G., T. Bollerslev, and F. X. Diebold. 2010. “Parametric and Nonparametric Volatility Measurement.” In Handbook of Financial Econometrics: Tools and Techniques, vol. 1, 67-137. Elsevier. Chap. 2.
[6] Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard. 2008. “Designing Realized Kernels to Measure the Ex Post Variation of Equity Prices in the Presence of Noise.” Econometrica 76: 1481-536. · Zbl 1153.91416
[7] Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard. 2009. “Realized Kernels in Practice: Trades and Quotes.” The Econometrics Journal 12: C1-32. doi:10.1111/j.1368-423x.2008.00275.x. · Zbl 1179.91259 · doi:10.1111/j.1368-423x.2008.00275.x
[8] Barndorff-Nielsen, O. E., and N. Shephard. 2002. “Econometric Analysis of Realized Volatility and its Use in Estimating Stochastic Volatility Models.” Journal of the Royal Statistical Society: Series B 64: 253-80. doi:10.1111/1467-9868.00336. · Zbl 1059.62107 · doi:10.1111/1467-9868.00336
[9] Barndorff-Nielsen, O. E., and N. Shephard. 2004. “Power and Bipower Variation with Stochastic Volatility and Jumps.” Journal of Financial Econometrics 2: 1-37. doi:10.1093/jjfinec/nbh001. · doi:10.1093/jjfinec/nbh001
[10] Barndorff-Nielsen, O. E., and N. Shephard. 2006. “Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation.” Journal of Financial Econometrics 4: 1-30. doi:10.1093/jjfinec/nbi022. · doi:10.1093/jjfinec/nbi022
[11] Bollerslev, T., A. J. Patton, and R. Quaedvlieg. 2016. “Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting.” Journal of Econometrics 192: 1-18. doi:10.1016/j.jeconom.2015.10.007. · Zbl 1419.62294 · doi:10.1016/j.jeconom.2015.10.007
[12] Bormetti, G., R. Casarin, F. Corsi, and G. Livieri. 2020. “A Stochastic Volatility Model with Realized Measures for Option Pricing.” Journal of Business & Economic Statistics 38: 856-71. doi:10.1080/07350015.2019.1604371. · doi:10.1080/07350015.2019.1604371
[13] Buccheri, G., and F. Corsi. 2021. “HARK the SHARK: Realized Volatility Modeling with Measurement Errors and Nonlinear Dependencies.” Journal of Financial Econometrics 19: 614-49. doi:10.1093/jjfinec/nbz025. · doi:10.1093/jjfinec/nbz025
[14] Busch, T., B. J. Christensen, and M. Ø. Nielsen. 2011. “The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets.” Journal of Econometrics 160: 48-57. doi:10.1016/j.jeconom.2010.03.014. · Zbl 1441.62620 · doi:10.1016/j.jeconom.2010.03.014
[15] Chaussé, P., and D. Xu. 2018. “GMM Estimation of a Realized Stochastic Volatility Model: A Monte Carlo Study.” Econometric Reviews 37: 719-43. doi:10.1080/07474938.2016.1152654. · Zbl 1490.62313 · doi:10.1080/07474938.2016.1152654
[16] Corsi, F. 2009. “A Simple Approximate Long-Memory Model of Realized Volatility.” Journal of Financial Econometrics 7: 174-96. doi:10.1093/jjfinec/nbp001. · doi:10.1093/jjfinec/nbp001
[17] Creal, D., S. J. Koopman, and A. Lucas. 2013. “Generalized Autoregressive Score Models with Applications.” Journal of Applied Econometrics 28: 777-95. doi:10.1002/jae.1279. · doi:10.1002/jae.1279
[18] Diebold, F. X., and R. S. Mariano. 1995. “Comparing Predictive Accuracy.” Journal of Business & Economic Statistics 13: 253-63. doi:10.1080/07350015.1995.10524599. · doi:10.1080/07350015.1995.10524599
[19] Durbin, J., and S. J. Koopman. 2012. Time Series Analysis by State Space Methods, 2nd ed. Oxford University Press. · Zbl 1270.62120
[20] Engle, R. 2001. “GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics.” The Journal of Economic Perspectives 15: 157-68. doi:10.1257/jep.15.4.157. · doi:10.1257/jep.15.4.157
[21] Engle, R. F. 1982. “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation.” Econometrica 50: 987-1008. doi:10.2307/1912773. · Zbl 0491.62099 · doi:10.2307/1912773
[22] Engle, R. F., and G. M. Gallo. 2006. “A Multiple Indicators Model for Volatility Using Intra-daily Data.” Journal of Econometrics 131: 3-27. doi:10.1016/j.jeconom.2005.01.018. · Zbl 1337.62359 · doi:10.1016/j.jeconom.2005.01.018
[23] Engle, R. F., and G. G. J. Lee. 1999. “A Long-Run and Short-Run Component Model of Stock Return Volatility.” In Cointegration, Causality, and Forecasting: A Festschrift in Honour of Clive W.J. Granger, edited by R. F. Engle, and H. White, 475-97. Oxford University Press. Chap. 20.
[24] Fissler, T., and J. F. Ziegel. 2016. “Higher Order Elicitability and Osband’s Principle (With Correction 2021).” Annals of Statistics 44: 1680-707. · Zbl 1355.62006
[25] Fissler, T., J. F. Ziegel, and T. Gneiting. 2016. “Expected Shortfall Is Jointly Elicitable with Value at Risk—Implications for Backtesting.” Risk: 55-61.
[26] Forsberg, L., and E. Ghysels. 2007. “Why Do Absolute Returns Predict Volatility So Well?” Journal of Financial Econometrics 5: 31-67. doi:10.1093/jjfinec/nbl010. · doi:10.1093/jjfinec/nbl010
[27] Hansen, P. R., A. Lunde, and J. M. Nason. 2011. “The Model Confidence Set.” Econometrica 79: 453-97. · Zbl 1210.62030
[28] Hansen, P. R., and Z. Huang. 2016. “Exponential GARCH Modeling with Realized Measures of Volatility.” Journal of Business & Economic Statistics 34: 269-87. doi:10.1080/07350015.2015.1038543. · doi:10.1080/07350015.2015.1038543
[29] Hansen, P. R., Z. Huang, and H. H. Shek. 2012. “Realized GARCH: A Joint Model for Returns and Realized Measures of Volatility.” Journal of Applied Econometrics 27: 877-906. doi:10.1002/jae.1234. · doi:10.1002/jae.1234
[30] Kawakatsu, H. 2021. “Information in Daily Data Volatility Measurements.” International Journal of Finance & Economics 26: 1642-56. doi:10.1002/ijfe.1868. · doi:10.1002/ijfe.1868
[31] Koopman, S. J., and M. Scharth. 2013. “The Analysis of Stochastic Volatility in the Presence of Daily Realized Measures.” Journal of Financial Econometrics 11: 76-115. doi:10.1093/jjfinec/nbs016. · doi:10.1093/jjfinec/nbs016
[32] Lin, Y.-X. 2007. “An Alternative Derivation of the Kalman Filter Using the Quasi-Likelihood Method.” Journal of Statistical Planning and Inference 137: 1627-33. doi:10.1016/j.jspi.2006.09.010. · Zbl 1110.62124 · doi:10.1016/j.jspi.2006.09.010
[33] Ljung, G. M., and G. E. P. Box. 1978. “On a Measure of Lack of Fit in Time Series Models.” Biometrika 66: 265-70. doi:10.1093/biomet/65.2.297. · Zbl 0386.62079 · doi:10.1093/biomet/65.2.297
[34] Newey, W. K., and K. West. 1994. “Automatic Lag Selection in Covariance Matrix Estimation.” The Review of Economic Studies 61: 631-53. doi:10.2307/2297912. · Zbl 0815.62063 · doi:10.2307/2297912
[35] Nolde, N., and J. F. Ziegel. 2017. “Elicitability and Backtesting: Perspectives for Banking Regulation (With Discussion).” Annals of Applied Statistics 11: 1833-74. doi:10.1214/17-AOAS1041. · Zbl 1383.62247 · doi:10.1214/17-AOAS1041
[36] Parkinson, M. 1980. “The Extreme Value Method for Estimating the Variance of the Rate of Return.” Journal of Business 53: 61-5. doi:10.1086/296071. · doi:10.1086/296071
[37] Patton, A. J. 2011. “Volatility Forecast Comparison Using Imperfect Volatility Proxies.” Journal of Econometrics 160: 246-56. doi:10.1016/j.jeconom.2010.03.034. · Zbl 1441.62830 · doi:10.1016/j.jeconom.2010.03.034
[38] Patton, A. J., and K. Sheppard. 2015. “Good Volatility, Bad Volatility: Signed Jumps and the Persistence of Volatility.” The Review of Economics and Statistics 97: 683-97. doi:10.1162/rest_a_00503. · doi:10.1162/rest_a_00503
[39] Patton, A. J., J. F. Ziegel, and R. Chen. 2019. “Dynamic Semiparametric Models for Expected Shortfall (And Value-At-Risk).” Journal of Econometrics 211: 388-413. doi:10.1016/j.jeconom.2018.10.008. · Zbl 1452.62785 · doi:10.1016/j.jeconom.2018.10.008
[40] Rogers, L. C. G., and S. E. Satchell. 1991. “Estimating Variance from High, Low and Closing Prices.” Annals of Applied Probability 1: 504-12. doi:10.1214/aoap/1177005835. · Zbl 0739.62084 · doi:10.1214/aoap/1177005835
[41] Rogers, L. C. G., S. E. Satchell, and Y. Yoon. 1994. “Estimating the Volatility of Stock Prices: A Comparison of Methods that Use High and Low Prices.” Applied Financial Economics 4: 241-7. doi:10.1080/758526905. · doi:10.1080/758526905
[42] Sandmann, G., and S. J. Koopman. 1998. “Estimation of Stochastic Volatility Models via Monte Carlo Maximum Likelihood.” Journal of Econometrics 87: 271-301. doi:10.1016/s0304-4076(98)00016-5. · Zbl 0937.62110 · doi:10.1016/s0304-4076(98)00016-5
[43] Schwert, G. W. 1989. “Why Does Stock Market Volatility Change over Time?” The Journal of Finance 44: 1115-53. doi:10.1111/j.1540-6261.1989.tb02647.x. · doi:10.1111/j.1540-6261.1989.tb02647.x
[44] Shephard, N., and K. Sheppard. 2010. “Realising the Future: Forecasting with High-Frequency-Based Volatility (HEAVY) Models.” Journal of Applied Econometrics 25: 197-231. doi:10.1002/jae.1158. · doi:10.1002/jae.1158
[45] Takahashi, M., Y. Omori, and T. Watanabe. 2009. “Estimating Stochastic Volatility Models Using Daily Returns and Realized Volatility Simultaneously.” Computational Statistics & Data Analysis 53: 2404-26. doi:10.1016/j.csda.2008.07.039. · Zbl 1453.62212 · doi:10.1016/j.csda.2008.07.039
[46] Zheng, T., and T. Song. 2014. “A Realized Stochastic Volatility Model with Box-Cox Transformation.” Journal of Business & Economic Statistics 32: 593-605. doi:10.1080/07350015.2014.918544. · doi:10.1080/07350015.2014.918544
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.