×

A hybrid GARCH and deep learning method for volatility prediction. (English) Zbl 1541.62277

Summary: Volatility prediction plays a vital role in financial data. The time series movements of stock prices are commonly characterized as highly nonlinear and volatile. This study is aimed at enhancing the accuracy of return volatility forecasts for stock prices by investigating the prediction of their price volatility through the integration of diverse models. Thus, the study integrated four powerful methods: seasonal autoregressive (AR) integrated moving average (MA), generalized AR conditional heteroskedasticity (ARCH) family models, convolutional neural network (CNN), and bidirectional long short-term memory (LSTM) network. The hybrid model was developed using the residuals generated by the seasonal AR integrated MA model as input for the generalized ARCH model. Following this, the estimated volatility obtained was utilized as an input feature for both the hybrid CNNs and bidirectional LSTM models. The model’s forecasting performance was assessed using key evaluation metrics, including mean absolute error (MAE) and root mean squared error (RMSE). Compared to other hybrid models, our new proposed hybrid model demonstrates an average reduction in MAE and RMSE of 60.35% and 60.61%, respectively. The experimental results show that the model proposed in this study has good performance and accuracy in predicting the volatility of stock prices. These findings offer valuable insights for financial data analysis and risk management strategies.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

References:

[1] Fama, E. F., The behavior of stock-market prices, The Journal of Business, 38, 1, 34-105, 1965 · doi:10.1086/294743
[2] Roh, T. H., Forecasting the volatility of stock price index, Expert Systems with Applications, 33, 4, 916-922, 2007
[3] Bhowmik, D., Stock market volatility: an evaluation, International Journal of Scientific and Research Publications, 3, 10, 1-17, 2013
[4] Engle, R. F., Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica: Journal of the Econometric Society, 50, 4, 987-1007, 1982 · Zbl 0491.62099 · doi:10.2307/1912773
[5] Bollerslev, T., Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 3, 307-327, 1986 · Zbl 0616.62119 · doi:10.1016/0304-4076(86)90063-1
[6] Khaldi, R.; El Afia, A.; Chiheb, R., Forecasting of BTC volatility: comparative study between parametric and nonparametric models, Progress in Artificial Intelligence, 8, 4, 511-523, 2019 · doi:10.1007/s13748-019-00196-w
[7] Nelson, D. B., Conditional heteroskedasticity in asset returns: a new approach, Econometrica: Journal of the Econometric Society, 59, 2, 347-370, 1991 · doi:10.2307/2938260
[8] Zakoian, J.-M., Threshold heteroskedastic models, Journal of Economic Dynamics and Control, 18, 5, 931-955, 1994 · Zbl 0875.90197 · doi:10.1016/0165-1889(94)90039-6
[9] Almansour, B. Y.; Alshater, M. M.; Almansour, A. Y., Performance of ARCH and GARCH models in forecasting cryptocurrency market volatility, Industrial Engineering & Management Systems, 20, 2, 130-139, 2021 · doi:10.7232/iems.2021.20.2.130
[10] Franses, P. H.; Van Dijk, D., Forecasting stock market volatility using (non-linear) GARCH models, Journal of Forecasting, 15, 3, 229-235, 1996 · doi:10.1002/(SICI)1099-131X(199604)15:3<229::AID-FOR620>3.0.CO;2-3
[11] Sen, J.; Mehtab, S.; Dutta, A., Volatility modeling of stocks from selected sectors of the Indian economy using GARCH, 2021 Asian Conference on Innovation in Technology (ASIANCON) · doi:10.1109/ASIANCON51346.2021.9544977
[12] Aduda, J.; Weke, P.; Ngare, P.; Mwaniki, J., Financial time series modelling of trends and patterns in the energy markets, Journal of Mathematical Finance, 6, 2, 324-337, 2016 · doi:10.4236/jmf.2016.62027
[13] Liu, Y., Novel volatility forecasting using deep learning-long short term memory recurrent neural networks, Expert Systems with Applications, 132, 99-109, 2019 · doi:10.1016/j.eswa.2019.04.038
[14] Kim, H. Y.; Won, C. H., Forecasting the volatility of stock price index: a hybrid model integrating LSTM with multiple GARCH-type models, Expert Systems with Applications, 103, 25-37, 2018 · doi:10.1016/j.eswa.2018.03.002
[15] Kakade, K.; Mishra, A. K.; Ghate, K.; Gupta, S., Forecasting commodity market returns volatility: a hybrid ensemble learning GARCH-LSTM based approach, Intelligent Systems in Accounting, Finance and Management, 29, 2, 103-117, 2022 · doi:10.1002/isaf.1515
[16] Vidal, A.; Kristjanpoller, W., Gold volatility prediction using a CNN-LSTM approach, Expert Systems with Applications, 157, article 113481, 2020 · doi:10.1016/j.eswa.2020.113481
[17] Zeng, H.; Shao, B.; Bian, G.; Dai, H.; Zhou, F., A hybrid deep learning approach by integrating extreme gradient boosting-long short-term memory with generalized autoregressive conditional heteroscedasticity family models for natural gas load volatility prediction, Energy Science & Engineering, 10, 7, 1998-2021, 2022 · doi:10.1002/ese3.1122
[18] Mademlis, D. K.; Dritsakis, N., Volatility forecasting using hybrid GARCH neural network models: the case of the Italian stock market, International Journal of Economics and Financial Issues, 11, 1, 49-60, 2021 · doi:10.32479/ijefi.10842
[19] Mustapa, F. H.; Ismail, M. T., Modelling and forecasting S&P 500 stock prices using hybrid Arima-Garch model, Journal of Physics: Conference Series, 1366, 1, article 012130, 2019 · doi:10.1088/1742-6596/1366/1/012130
[20] Glosten, L. R.; Jagannathan, R.; Runkle, D. E., On the relation between the expected value and the volatility of the nominal excess return on stocks, The Journal of Finance, 48, 5, 1779-1801, 1993 · doi:10.1111/j.1540-6261.1993.tb05128.x
[21] Rabemananjara, R.; Zakoian, J.-M., Threshold ARCH models and asymmetries in volatility, Journal of Applied Econometrics, 8, 1, 31-49, 1993 · doi:10.1002/jae.3950080104
[22] Poon, S.-H., A Practical Guide to Forecasting Financial Market Volatility, 2005, John Wiley & Sons
[23] Akaike, H., A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 6, 716-723, 1974 · Zbl 0314.62039 · doi:10.1109/TAC.1974.1100705
[24] Berzal, F., Redes Neuronales & Deep Learning: Volumen II, 2019, Independently published
[25] Vakalopoulou, M.; Christodoulidis, S.; Burgos, N.; Colliot, O.; Lepetit, V.; Colliot, O., Deep learning: basics and convolutional neural networks (CNNs), Machine Learning for Brain Disorders. Machine Learning for Brain Disorders, Neuromethods, 197, 2023, New York, NY: Humana, New York, NY · doi:10.1007/978-1-0716-3195-9_3
[26] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning, 2016, MIT press · Zbl 1373.68009
[27] Cao, J.; Wang, J., Stock price forecasting model based on modified convolution neural network and financial time series analysis, International Journal of Communication Systems, 32, 12, article e3987, 2019 · doi:10.1002/dac.3987
[28] Muhammad, L.; Haruna, A. A.; Sharif, U. S.; Mohammed, M. B., CNN-LSTM deep learning based forecasting model for Covid-19 infection cases in Nigeria, South Africa and Botswana, Health and Technology, 12, 6, 1259-1276, 2022 · doi:10.1007/s12553-022-00711-5
[29] Rala Cordeiro, J.; Raimundo, A.; Postolache, O.; Sebastião, P., Neural architecture search for 1D CNNs—different approaches tests and measurements, Sensors, 21, 23, 7990, 2021 · doi:10.3390/s21237990
[30] Yerima, S. Y.; Alzaylaee, M. K.; Shajan, A. P. V., Deep learning techniques for android botnet detection, Electronics, 10, 4, 519, 2021 · doi:10.3390/electronics10040519
[31] Hochreiter, S.; Schmidhuber, J., Long short-term memory, Neural Computation, 9, 8, 1735-1780, 1997 · doi:10.1162/neco.1997.9.8.1735
[32] Noor, M.; Yahaya, A.; Ramli, N. A.; Al Bakri, A. M., Filling missing data using interpolation methods: study on the effect of fitting distribution, Key Engineering Materials, 594, 889-895, 2014
[33] Erdogan, K., Spline interpolation techniques, Journal of Technical Science and Technologies, 2, 1, 47-52, 2013 · doi:10.31578/jtst.v2i1.56
[34] Memarzadeh, G.; Keynia, F., A new short-term wind speed forecasting method based on fine-tuned LSTM neural network and optimal input sets, Energy Conversion and Management, 213, article 112824, 2020 · doi:10.1016/j.enconman.2020.112824
[35] Aksan, F.; Li, Y.; Suresh, V.; Janik, P., CNN-LSTM vs. LSTM-CNN to predict power flow direction: a case study of the high-voltage subnet of Northeast Germany, Sensors, 23, 2, 901, 2023 · doi:10.3390/s23020901
[36] Hajizadeh, E.; Seifi, A.; Zarandi, M. F.; Turksen, I., A hybrid modeling approach for forecasting the volatility of S&P 500 index return, Expert Systems with Applications, 39, 1, 431-436, 2012 · doi:10.1016/j.eswa.2011.07.033
[37] Seo, M.; Kim, G., Hybrid forecasting models based on the neural networks for the volatility of bitcoin, Applied Sciences, 10, 14, 4768, 2020 · doi:10.3390/app10144768
[38] Moore, D. S.; McCabe, G. P., Introduction to the Practice of Statistics, 1989, WH Freeman/Times Books/Henry Holt & Co. · Zbl 0701.62002
[39] Stone, M., An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion, Journal of the Royal Statistical Society: Series B (Methodological), 39, 1, 44-47, 1977 · Zbl 0355.62002 · doi:10.1111/j.2517-6161.1977.tb01603.x
[40] Budiarti, R.; Intansari, K.; Purnaba, I. G. P.; Septyanto, F., Modelling dependencies of stock indices during Covid-19 pandemic by extreme-value copula, Jurnal Teori dan Aplikasi Matematika, 7, 3, 805-819, 2023 · doi:10.31764/jtam.v7i3.15109
[41] Alexander, C., Market Risk Analysis, 2009, Boxset: John Wiley & Sons, Boxset
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.