×

Short-time asymptotics for game-theoretic \(p\)-Laplacian and Pucci operators. (English) Zbl 1541.35299

Cerejeiras, Paula (ed.) et al., Current trends in analysis, its applications and computation. Proceedings of the 12th ISAAC congress, Aveiro, Portugal, July 29 – August 3, 2019. Cham: Birkhäuser. Trends Math., 413-421 (2022).
Summary: Let \(\Omega\) be a domain of \(\mathbb{R}^N\), \(N \geq 2\), with non empty boundary \(\Gamma\). In these notes, we deal with the solution \(u\) of \(u_t = F\left (\nabla u, \nabla^2 u\right)\) in \(\Omega \times (0, \infty)\), such that \(u\) is initially zero in \(\Omega\) and equals one on \(\Gamma\) for all positive times. Here, \(F\) is the game-theoretic \(p\)-Laplacian \(\Delta_p^G\) or either one of the Pucci’s extremal operators \(\mathcal{M}^\pm\). In the spirit of works by Varadhan and Magnanini-Sakaguchi in the case of the same initial-boundary problem for the heat equation, we summarize recent results regarding the connection between the behavior for small times and the geometry of \(\Omega\). In particular, we present asymptotic formulas as \(t \rightarrow 0^+\) for both the values of \(u\) and of its \(q\)-means on balls touching \(\Gamma\).
For the entire collection see [Zbl 1497.42002].

MSC:

35K92 Quasilinear parabolic equations with \(p\)-Laplacian
35K20 Initial-boundary value problems for second-order parabolic equations
35Q89 PDEs in connection with mean field game theory
Full Text: DOI

References:

[1] Banerjee, A.; Garofalo, N., Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations, Indiana Univ. Math. J., 62, 2, 699-736 (2013) · Zbl 1296.35088 · doi:10.1512/iumj.2013.62.4969
[2] Bensoussan, A.; Lions, J-L, Applications of Variational Inequalities in Stochastic Control, Studies in Mathematics and Its Applications (1982), Amsterdam: North-Holland, Amsterdam · Zbl 0478.49002
[3] D. Berti, Asymptotic analysis of solutions related to the game-theoretic p-Laplacian. PhD Thesis, Università di Firenze, 2019. https://arxiv.org/abs/1902.10346
[4] Berti, D.; Magnanini, R., Asymptotics for the resolvent equation associated to the game-theoretic p-Laplacian, Appl. Anal., 98, 10, 1827-1842 (2019) · Zbl 1421.35164 · doi:10.1080/00036811.2018.1466283
[5] D. Berti, R. Magnanini, Short-time behavior for game-theoretic p-caloric functions. J. Math. Pures Appl. (9) 126, 249-272 (2019) · Zbl 1412.35191
[6] D. Berti, R. Magnanini, Small diffusione and short-time asymptotics for Pucci operators. Appl. Anal. (2020). doi:10.1080/00036811.2020.1750602
[7] Caffarelli, LA; Cabré, X., Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications (1995), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0834.35002
[8] M.G. Crandall, H. Ishii, P.-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1-67 (1992) · Zbl 0755.35015
[9] R. Magnanini, S. Sakaguchi, Matzoh ball soup: heat conductors with a stationary isothermic surface. Ann. Math. (2) 156(3), 931-946 (2002) · Zbl 1011.35066
[10] Magnanini, R.; Sakaguchi, S., Interaction between degenerate diffusion and shape of domain, Proc. Roy. Soc. Edinb. Sect. A, 137, 2, 373-388 (2007) · Zbl 1120.35057 · doi:10.1017/S0308210505001071
[11] Magnanini, R.; Sakaguchi, S., Polygonal heat conductors with a stationary hot spot, J. Anal. Math., 105, 1-18 (2008) · Zbl 1176.35013 · doi:10.1007/s11854-008-0029-1
[12] Magnanini, R.; Sakaguchi, S., Nonlinear diffusion with a bounded stationary level surface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 3, 937-952 (2010) · Zbl 1194.35209 · doi:10.1016/j.anihpc.2009.12.001
[13] Peres, Y.; Schramm, O.; Sheffield, S.; Wilson, DB, Tug-of-war and the infinity Laplacian, J. Am. Math. Soc., 22, 1, 167-210 (2009) · Zbl 1206.91002 · doi:10.1090/S0894-0347-08-00606-1
[14] Peres, Y.; Sheffield, S., Tug-of-war with noise: a game-theoretic view of the p-Laplacian, Duke Math. J., 145, 1, 91-120 (2008) · Zbl 1206.35112 · doi:10.1215/00127094-2008-048
[15] C. Pucci, Operatori ellittici estremanti. Ann. Mat. Pura Appl. (4) 72, 141-170 (1966) · Zbl 0154.12402
[16] Varadhan, SRS, On the behavior of the fundamental solution of the heat equation with variable coefficients, Commun. Pure Appl. Math., 20, 431-455 (1967) · Zbl 0155.16503 · doi:10.1002/cpa.3160200210
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.