×

On existence and multiplicity of solutions for a biharmonic problem with weights via Ricceri’s theorem. (English) Zbl 1541.35186

Summary: In this work, we consider a special nondegenerate equation with two weights. We investigate multiplicity result of this biharmonic equation. Mainly, our purpose is to obtain this result using an alternative Ricceri’s theorem. Moreover, we give some compact embeddings in variable exponent Sobolev spaces with second order to prove the main idea.

MSC:

35J40 Boundary value problems for higher-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs

References:

[1] A. Ayoujil and A. R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal. 71 (2009), 4916-4926. · Zbl 1167.35380
[2] A. C. Cavalheiro, Existence of entropy solutions for degenerate quasilinear elliptic equations, Complex Var. Elliptic Equ. 53 (2008), no. 10, 945-956. · Zbl 1152.35040
[3] A. C. Cavalheiro, Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations, Arc. Math. (Brno) Tomus 50 (2014), 51-63. · Zbl 1324.35039
[4] A. C. Cavalheiro, Existence and uniqueness of solutions for problems with weighted p-Laplacian and p-biharmonic operators, Elec. J. Math. Anal. App. 3 (2015), no. 2, 215-226. · Zbl 1463.35275
[5] B. Ge, Q. M. Ge, and Y. H. Wu, Eigenvalues of the p(x)-biharmonic operator with indefinite weight, Z. Angew. Math. Phys. 66 (2015), 1007-1021. · Zbl 1319.35147
[6] K. Kefi, For a class of p(x)-biharmonic operators with weights, RACSAM 113 (2019), 1557-1570. · Zbl 1420.35168
[7] K. Kefi and V. Rădulescu, On a p(x)-biharmonic problem with singular weights, Z. Angew. Math. Phys. 68 (2017), no. 4, 80. · Zbl 1379.35117
[8] K. Kefi and K. Saoudi, On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions, Adv. Nonlinear Anal. 8 (2019), 1171-1183. · Zbl 1419.35038
[9] L. Kong, On a fourth order elliptic problem with a p(x)-biharmonic operator, Appl. Math. Lett. 27 (2014), 21-25. · Zbl 1317.35055
[10] L. Kong, Eigenvalues for a fourth order elliptic problem, Proc. Amer. Math. Soc. 143 (2015), 249-258. · Zbl 1317.35166
[11] L. Li and C. Tang, Existence and multiplicity of solutions for a class of p(x)-biharmonic equations, Acta Math. Sci. 33B (2013), no. 1, 155-170. · Zbl 1289.35081
[12] G. A. Afrouzi and S. Heidarkhani, Three solutions for a Dirichlet boundary value problem involving the p-Laplacian, Nonlinear Anal. 66 (2007), 2281-2288. · Zbl 1387.35199
[13] G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. 80 (2003), 424-429. · Zbl 1161.35382
[14] G. Bonanno and R. Livrean, Multiplicity theorems for the Dirichlet problem involving the p-Laplacian, Nonlinear Anal. 54 (2003), 1-7. · Zbl 1163.35367
[15] G. Bonanno, G. Molica Bisci, and V. Rădulescu, Multiple solutions of generalized Yamabe equations on Riemannian manifolds and applications to Emden-Fowler problems, Nonlinear Anal. Real World Appl. 12 (2011), no. 5, 2656-2665. · Zbl 1252.53043
[16] M. Mihăilescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal. 67 (2007), 1419-1425. · Zbl 1163.35381
[17] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), 220-226. · Zbl 0979.35040
[18] Q. Liu, Existence of three solutions for p(x)-Laplacian equations, Nonlinear Anal. 68 (2008), 2119-2127. · Zbl 1135.35329
[19] X. Shi and X. Ding, Existence and multiplicity of solutions for a general p(x)-Laplacian Neumann problem, Nonlinear Anal. 70 (2009), 3715-3720. · Zbl 1170.34311
[20] P. Drábek and M. Ôtani, Global bifurcation result for the p-biharmonic operator, Electron. J. Differential Equations 48 (2001), 1-19. · Zbl 0983.35099
[21] M. Talbi and N. Tsouli, On the spectrum of the weighted p-biharmonic operator with weight, Mediterr. J. Math. 4 (2007), 73-86. · Zbl 1150.35072
[22] L. Li, L. Ding, and W. Pan, Existence of multiple solutions for a p(x)-biharmonic equation, Electron. J. Differential Equations 2013 (2013), no. 139, 1-10. · Zbl 1291.35089
[23] I. Aydin, Almost all weak solutions of the weighted p(.)-biharmonic problem, J. Anal. 2023, DOI: https://doi.org/10.1007/s41478-023-00628-w.
[24] I. Aydin and C. Unal, Three solutions to a Steklov problem involving the weighted p(.)-Laplacian, Rocky Mountain J. Math. 51 (2021), no. 1, 67-76. · Zbl 1473.35308
[25] I. Aydin and C. Unal, Weighted stochastic field exponent Sobolev spaces and nonlinear degenerated elliptic problem with nonstandard growth, Hacettepe J. Math. Stat. 49 (2020), no. 4, 1383-1396. · Zbl 1488.46067
[26] I. Aydin and C. Unal, Existence and multiplicity of weak solutions for eigenvalue Robin problem with weighted p(.)-Laplacian, Ric. Mat. 72 (2023), 511-528, DOI: https://doi.org/10.1007/s11587-021-00621-0. · Zbl 1525.35148
[27] O. Kulak, I. Aydin, and C. Unal, Existence of weak solutions for weighted Robin problem involving p(.)-biharmonic operator, Differ. Equ. Dyn. Syst. 2022, DOI: https://doi.org/10.1007/s12591-022-00619-6.
[28] C. Unal and I. Aydin, On some properties of relative capacity and thinness in weighted variable exponent Sobolev spaces, Anal. Math. 46 (2020), no. 1, 147-167. · Zbl 1449.32012
[29] R. A. Adams and J. J. Fournier, Sobolev Spaces, 2nd ed., vol. 305, Academic Press, Amsterdam, 2003. · Zbl 1098.46001
[30] O. Kováčik and J. Rákosník, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41 (1991), no. 116, 4, 592-618. · Zbl 0784.46029
[31] S. G. Deng, Eigenvalues of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl. 339 (2008), 925-937. · Zbl 1160.49307
[32] M. Hsini, N. Irzi, and K. Kefi, Nonhomogeneous p(x)-Laplacian Steklov problem with weights, Complex Var. Elliptic Equ. 65 (2020), no. 3, 440-454. · Zbl 1433.35150
[33] C. Unal and I. Aydin, Compact embeddings of weighted variable exponent Sobolev spaces and existence of solutions for weighted p(.)-Laplacian, Complex Var. Elliptic Equ. 66 (2020), no. 10, 1755-1773. · Zbl 1479.35496
[34] I. Aydin, Weighted variable Sobolev spaces and capacity, J. Funct. Spaces Appl. 2012 (2012), 132690, DOI: https://doi.org/10.1155/2012/132690. · Zbl 1241.46019 · doi:10.1155/2012/132690
[35] I. Aydin and C. Unal, The Kolmogorov-Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces, Collect. Math. 71 (2020), 349-367. · Zbl 1464.46039
[36] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, 2011. · Zbl 1222.46002
[37] X. L. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), 424-446. · Zbl 1028.46041
[38] C. Unal and I. Aydin, Compact embeddings on a subspace of weighted variable exponent Sobolev spaces, Adv. Oper. Theory 4 (2019), no. 2, 388-405. · Zbl 1417.46026
[39] M. Izuki, T. Nogayama, T. Noi, and Y. Sawano, Wavelet characterization of local Muckenhoupt weighted Lebesgue spaces with variable exponent, Nonlinear Anal. 198 (2020), 111930. · Zbl 1446.42035
[40] Q. Liu, Compact trace in weighted variable exponent Sobolev spaces W1,p(x)(Ω;ν0,ν1), J. Math. Anal. Appl. 348 (2008), 760-774. · Zbl 1159.46020
[41] A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal. 69 (2008), 3629-3636. · Zbl 1153.26312
[42] M. Hsini, N. Irzi, and K. Kefi, Existence of solutions for a p(x)-biharmonic problem under Neumann boundary conditions, Appl. Anal. 100 (2021), no. 10, 2188-2199. · Zbl 1473.35229
[43] V. V. Zhikov and M. D. Surnachev, On density of smooth functions in weighted Sobolev spaces with variable exponents, St. Petersburg Math. J. 27 (2016), 415-436. · Zbl 1354.46039
[44] E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B, Springer-Verlag, New York, 1990. · Zbl 0684.47029
[45] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling 32 (2000), 1485-1494. · Zbl 0970.35089
[46] B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), 3084-3089. · Zbl 1214.47079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.