×

Convergence problem of the generalized Kadomtsev-Petviashvili II equation in anisotropic Sobolev space. (English) Zbl 1541.35076

Summary: The almost everywhere pointwise and uniform convergences for the generalized KP-II equation are investigated when the initial data is in anisotropic Sobolev space \(H^{s_1, s_2}(\mathbb{R}^2)\). Firstly, we show that the solution \(u(x, y, t)\) converges pointwisely to the initial data \(f(x, y)\in H^{s_1, s_2}(\mathbb{R}^2)\) for a.e. \((x, y) \in\mathbb{R}^2\) when \(s_1 \geq \frac{1}{4}\), \(s_2 \geq \frac{1}{4}\). The proof relies upon the Strichartz estimate and high-low frequency decomposition. Secondly, We prove that \(s_1 \geq \frac{1}{4}\), \(s_2 \geq \frac{1}{4}\) is a necessary condition for the maximal function estimate of the generalized KP-II equation to hold. Finally, by using the Fourier restriction norm method, we establish the nonlinear smoothing estimate to show the uniform convergence of the generalized KP-II equation in \(H^{s_1, s_2}(\mathbb{R}^2)\) with \(s_1 \geq \frac{3}{2} - \frac{\alpha}{4} + \epsilon\), \(s_2 > \frac{1}{2}\) and \(\alpha \geq 4\).

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35G25 Initial value problems for nonlinear higher-order PDEs
Full Text: DOI

References:

[1] Ben-Artzi, M.; Saut, JC, Uniform decay estimates for a class of oscillatory integrals and applications, Differ. Int. Eqns., 12, 137-145, 1999 · Zbl 1016.35006
[2] Bourgain, J., On the Cauchy problem for the Kadomtsev-Petviashvili equation, Geom. Funct. Anal., 3, 315-341, 1993 · Zbl 0787.35086 · doi:10.1007/BF01896259
[3] Bourgain, J., A note on the Schrödinger maximal function, J. Anal. Math., 130, 393-396, 2016 · Zbl 1361.35151 · doi:10.1007/s11854-016-0042-8
[4] Bourgain, J., On the Schrödinger maximal function in higher dimension, Proc. Steklov Inst. Math., 280, 46-60, 2013 · Zbl 1291.35253 · doi:10.1134/S0081543813010045
[5] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations, part I: Schrödinger equations, Geom. Funct. Anal., 3, 2, 107-156, 1993 · Zbl 0787.35097 · doi:10.1007/BF01896020
[6] Bourgain, J., Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part II: the KdV equation, Geom. Funct. Anal., 3, 209-262, 1993 · Zbl 0787.35098 · doi:10.1007/BF01895688
[7] Boukarou, A.; Oliveira, DD; Kaddour, G.; Khaled, Z., Global well-posedness for the fifth-order Kadomtsev-Petviashvili II equation in anisotropic Gevrey spaces, Dyn. Partial Differ. Equ., 18, 101-112, 2021 · Zbl 1470.35303 · doi:10.4310/DPDE.2021.v18.n2.a2
[8] Compaan, E.; Lucá, R.; Staffilani, G., Pointwise convergence of the Schrödinger flow, Int. Math. Res. Not., 1, 599-650, 2021 · Zbl 1476.35231
[9] Carleson, L.: Some analytical problems related to statistical mechanics. Euclidean Harmonic Analysis. Lecture Notes in Mathematics, vol. 799, pp. 5. 45. Springer, Berlin (1979)
[10] Dahlberg, B.E., Kenig, C.E.: A note on the almost everywhere behavior of solutions to the Schrödinger equation. In: Proceedinger of Italo-American Symposium in Harmonic Analysis University of Minnesota. Lecture Notes in Mathematics, vol. 908, pp. 205-209. Springer, Berlin (1981) · Zbl 0519.35022
[11] Du, X.: A sharp Schrödinger maximal estimate in \({\textbf{R}}^2 \), Dissertation (2017)
[12] Du, X.; Zhang, R., Sharp \(L^2\) estimates of the Schrödinger maximal function in high dimensions, Ann. Math., 189, 837-861, 2019 · Zbl 1433.42010 · doi:10.4007/annals.2019.189.3.4
[13] Du, X., Guth, L., Li, X., Zhang, R.: Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates. Forum Math. Sigma. 6 (2018) · Zbl 1395.42063
[14] Du, X.; Guth, L.; Li, X., A sharp Schrödinger maximal estimate in \({\textbf{R} }^2 \), Ann. Math., 188, 607-640, 2017 · Zbl 1378.42011
[15] Erdogan, M.B., Tzirakis, N.: The Initial Value Problem for KdV, University of Illinois, Urbana-Champaign, IL Lecture Notes (2013)
[16] Ginibre, J.: Le problème de Cauchy pour des EDP semi-linéaires périodiquesen variables d’espace (d’après Bourgain), Astérisque (1996), no. 237, Exp. No. 796, 4, 163-187, séminaire Bourbaki, Vol. 1994/95 · Zbl 0870.35096
[17] Grünrock, A.; Panthee, M.; Silva, JD, On KP-II type equations on cylinders, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26, 2335-2358, 2009 · Zbl 1181.35237 · doi:10.1016/j.anihpc.2009.04.002
[18] Hadac, M., Well-posedness for the Kadomtsev-Petviashvili II equation and generalizations, Trans. Am. Math. Soc., 360, 6555-6572, 2008 · Zbl 1157.35094 · doi:10.1090/S0002-9947-08-04515-7
[19] Hadac, M., Herr, S., Koch, H.: Well-posedness and scattering for the KP-II equation in a critical space. Ann. Inst. H. Poincaré-AN 917-941 (2009) · Zbl 1169.35372
[20] Hayashi, N., Naumkin, P.I.: Large time asymptotics for the Kadomtsev-Petviashvili equation. Commun. Math. Phys. 332, 505-533 (2014) · Zbl 1318.35098
[21] Ionescu, AD; Kenig, CE; Tataru, D., Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math., 173, 265-304, 2008 · Zbl 1188.35163 · doi:10.1007/s00222-008-0115-0
[22] Isaza, P.; Löpez, J.; Mejía, J., Cauchy problem for the fifth order Kadomtsev-Petviashvili (KPII) equation, Commun. Pure Appl. Anal., 5, 887-905, 2006 · Zbl 1142.35079 · doi:10.3934/cpaa.2006.5.887
[23] Isaza, P.; Mejía, J., Local and global Cauchy problems for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev spaces of negative indices, Commun. Partial Differ. Equ., 26, 1027-1054, 2001 · Zbl 0993.35080 · doi:10.1081/PDE-100002387
[24] Isaza, P.; Mejía, J., Global solution for the Kadomtsev-Petviashvili equation (KP-II) in anisotropic Sobolev spaces of negative indices, Electr. J. Differ. Equ., 68, 1-12, 2003 · Zbl 1037.35068
[25] Isaza, P.; Mejía, J.; Tzvetkov, N., A smoothing effect and polynomial growth of the Sobolev norms for the KP-II equation, J. Differ. Equ., 220, 1-17, 2006 · Zbl 1081.35097 · doi:10.1016/j.jde.2004.10.002
[26] Isaza, P.; Mejía, J.; Stallbohm, V., The Cauchy problem for the Kadomtsev-Petviashvili (KP-II) equation in Sobolev space \(H^s, s>0 \), Differ. Int. Equ., 14, 529-557, 2011 · Zbl 1055.35101
[27] Isaza, P.; Mejía, J., The Cauchy problem for the Kadomtsev-Petviashvili (KP-II) equation in three space dimensions, Commun. Partial Differ. Equ., 32, 611-641, 2007 · Zbl 1123.35058 · doi:10.1080/03605300500530461
[28] Karpman, VI; Belashov, VY, Dynamics of two dimensional solitons in weakly dispersive media, Phys. Lett. A, 154, 131-139, 1991 · doi:10.1016/0375-9601(91)90750-3
[29] Karpman, VI; Petviashvili, VI, On the stability of solotary waves in weakly dispersive media, Sov. Phys. Dokl., 15, 539-541, 1970 · Zbl 0217.25004
[30] Kenig, CE; Ponce, G.; Vega, L., Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40, 33-69, 1991 · Zbl 0738.35022 · doi:10.1512/iumj.1991.40.40003
[31] Kenig, CE; Ponce, G.; Vega, L., The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71, 1-21, 1993 · Zbl 0787.35090 · doi:10.1215/S0012-7094-93-07101-3
[32] Kenig, CE; Ziesler, SN, Local well posedness for modified Kadomstev-Petviashvili equations, Differ. Int. Equ., 10, 1111-1146, 2005 · Zbl 1212.35419
[33] Koch, H.; Li, JF, Global well-posedness and scattering for small data for the three-dimensional Kadomtsev-Petviashvili II equation, Commun. Partial Differ. Equ., 42, 950-976, 2017 · Zbl 1373.35274 · doi:10.1080/03605302.2017.1320410
[34] Kishimoto, N.; Shan, M.; Tsutsumi, Y., Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili equation in the anisotropic Sobolev space, Discrete Contin. Dyn. Syst., 40, 1283-1307, 2020 · Zbl 1435.35335 · doi:10.3934/dcds.2020078
[35] Li, JF; Shi, SG, A local well-posed result for the fifth order KP-II initial value problem, J. Math. Anal. Appl., 402, 679-692, 2013 · Zbl 1310.35207 · doi:10.1016/j.jmaa.2013.01.069
[36] Lucà, R.; Rogers, KM, Coherence on fractals versus pointwise convergence for the Schrödinger equation, Commun. Math. Phys., 315, 341-359, 2017 · Zbl 1375.35422 · doi:10.1007/s00220-016-2722-8
[37] Lucà, R.; Rogers, KM, A note on pointwise convergence for the Schrödinger equation, Math. Proc. Cambr. Philos. Soc., 166, 209-218, 2019 · Zbl 1412.35289 · doi:10.1017/S0305004117000743
[38] Li, J.; Meng, K., Global well-posedness for the fifth order Kadomtsev-Petviashvili II equation in three dimensional space, Nonlinear Anal., 130, 157-175, 2016 · Zbl 1330.35383 · doi:10.1016/j.na.2015.09.030
[39] Linares, F.; Ramos, JPG, Maximal function estimates and local well-posedness for the generalized Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 53, 914-936, 2021 · Zbl 1457.42031 · doi:10.1137/20M1344524
[40] Linares, F.; Ramos, JPG, The Cauchy problem for the \(L^2\)-critical generalized Zakharov-Kuznetsov equation in dimension 3, Commun. Partial Differ. Equ., 46, 1601-1627, 2021 · Zbl 1477.35221 · doi:10.1080/03605302.2021.1888119
[41] Miao, C.; Zhang, J.; Zheng, J., Maximal estimates for Schrödinger equation with inverse-square potential, Pac. J. Math., 273, 1-19, 2015 · Zbl 1309.35103 · doi:10.2140/pjm.2015.273.1
[42] Rogers, KM; Vargas, A.; Vega, L., Pointwise convergence of solutions to the nonelliptic Schrödinger, Indiana Univ. Math. J., 55, 1893-1906, 2006 · Zbl 1124.35071 · doi:10.1512/iumj.2006.55.2827
[43] Rogers, KM; Villarroya, P., Sharp estimates for maximal operators associated to the wave equation, Ark. Mat., 46, 143-151, 2008 · Zbl 1142.35492 · doi:10.1007/s11512-007-0063-8
[44] Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 55, 699-715, 1987 · Zbl 0631.42010 · doi:10.1215/S0012-7094-87-05535-9
[45] Sjölin, P., Maximal estimates for solutions to the nonelliptic Schrödinger equation, Bull. Lond. Math. Soc., 39, 3, 404-412, 2007 · Zbl 1196.35176 · doi:10.1112/blms/bdm024
[46] Saut, JC; Tzvetkov, N., The Cauchy problem for high-order KP equations, J. Differ. Equ., 153, 196-222, 1999 · Zbl 0927.35098 · doi:10.1006/jdeq.1998.3534
[47] Saut, JC; Tzvetkov, N., The Cauchy problem for the fifth order KP equations, J. Math. Pures Appl., 79, 307-338, 2000 · Zbl 0961.35137 · doi:10.1016/S0021-7824(00)00156-2
[48] Takaoka, H., Well-posedness for the Kadomtsev-Petviashvili II equation, Adv. Differ. Equ., 5, 1421-1443, 2000 · Zbl 0994.35108
[49] Takaoka, H.; Tzvetkov, N., On the local regularity of the Kadomtsev-Petviashvili-II equation, Int. Math. Res. Not., 2001, 77-114, 2001 · Zbl 0977.35126 · doi:10.1155/S1073792801000058
[50] Tzvetkov, N., Long time bounds for the periodic KP-II equation, Int. Math. Res. Not., 2004, 2485-2496, 2004 · Zbl 1073.35195 · doi:10.1155/S1073792804133655
[51] Vega, L., Schrödinger equations: pointwise convergence to the initial data, Proc. Am. Math., 102, 874-878, 1988 · Zbl 0654.42014
[52] Wang, X.; Zhang, CJ, Pointwise convergence of solutions to the Schrödinger equation on manifolds, Can. J. Math., 71, 983-995, 2019 · Zbl 1421.35312 · doi:10.4153/CJM-2018-001-4
[53] Yan, W., Li, Y., Zhang, Y.: Global well-posedness of the generalized KP-II equation in anisotropic Sobolev spaces. (2018) arXiv:1709.06077
[54] Yan, XQ; Zhao, YJ; Yan, W., Convergence problem of Schrödinger equation in Fourier-Lebesgue spaces with rough data and random data, Proc. Am. Math. Soc., 150, 2455-2467, 2022 · Zbl 1485.42037
[55] Yan, W., Wang, W.M., Yan, X.Q.: Convergence problem of the Kawahara equation on the real line. J. Math. Anal. Appl. 515 (2022) · Zbl 1504.35458
[56] Zhang, CJ, Pointwise convergence of solutions to Schrödinger type equations, Nonlinear Anal., 71, 983-995, 2019 · Zbl 1421.35312
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.