×

Subharmonic bouncing solutions for a class of sublinear impact oscillators with indefinite weight. (English) Zbl 1541.34058

The motion of a particle attached to a nonlinear spring and bouncing elastically against a fixed barrier can be modelled by a set of equations of forced sublinear impact oscillators of Hill’s type with indefinite weight. In this paper, the authors investigate the existence and multiplicity of subharmonic bouncing solutions in a class of such systems. By applying a series of coordinate transformations, they first obtain a nearly integrable Hamiltonian. Then, they show that the Poincaré map of the new system is a “twist” map. Finally, they prove the existence of infinite numbers of subharmonic bouncing solutions by using the Poincaré-Birkhoff twist theorem.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37E40 Dynamical aspects of twist maps
Full Text: DOI

References:

[1] P. Boyland, Dual billiards, Twist maps and impact oscillators, Nonlinearity, 9, 1411-1438 (1996) · Zbl 0907.58036 · doi:10.1088/0951-7715/9/6/002
[2] M. J. Corbera Llibre, Periodic orbits of a collinear restricted three-body problem, Celestial Mech, Celestial Mech. Dynam. Astronom., 86, 163-183 (2003) · Zbl 1062.70016 · doi:10.1023/A:1024183003251
[3] R. E. Dieckerhoff Zehnder, Boundedness of solutions via the twist theorem, Ann. Scuola Norm. Sup. Pisa, 14, 79-95 (1987) · Zbl 0656.34027
[4] W. Ding, Fixed points of twist mappings and periodic solutions of ordinary differential equations, Acta Math. Sinica, 25, 227-235 (1982) · Zbl 0501.34037
[5] W. Ding, D. Qian and C. Wang, et al., Existence of Periodic Solutions of sub -linear Hamiltonian Systems, Acta Math. Sin.(Engl. Ser.)32 · Zbl 1344.34049
[6] M. Kunze, Non-smooth Dynamical Systems, Lecture Notes in Math · Zbl 0965.34026
[7] T. J. Kupper You, Existence of quasiperiodic solutions and Littlewood’s boundedness problem of Duffing equations with subquadratic potentials, Nonlinear Anal., 35, 549-559 (1999) · Zbl 0927.34021 · doi:10.1016/S0362-546X(97)00709-8
[8] H. Lamba, Chaotic, Regular and unbounded behaviour in the elastic impact oscillator, Phys. D, 82, 117-135 (1995) · Zbl 0900.70341 · doi:10.1016/0167-2789(94)00222-C
[9] B. Liu, On Littlewood’s Boundedness problem for sublinear Duffing equations, Trans. Amer. Math. Soc., 353, 1567-1585 (2001) · Zbl 0974.34031 · doi:10.1090/S0002-9947-00-02770-7
[10] R. Ortega, Dynamics of a forced oscillator having an obstacle, Variational and Topological Methods in the Study of Nonlinear Phenomena
[11] D. P. J. Qian Torres, Bouncing solutions of an equation with attractive singularity, Proc. Roy. Soc. Edinburgh Sect. A, 134, 201-213 (2004) · Zbl 1062.34047 · doi:10.1017/S0308210500003164
[12] D. P. J. Qian Torres, Periodic motions of linear impact oscillators via the successor map, SIAM J. Math. Anal., 36, 1707-1725 (2005) · Zbl 1092.34019 · doi:10.1137/S003614100343771X
[13] D. X. Qian Sun, Invariant tori for asymptotically linear impact oscillators, Sci. China Ser. A, 49, 669-687 (2006) · Zbl 1113.34029 · doi:10.1007/s11425-006-0669-5
[14] X. D. Sun Qian, Periodic bouncing solutions for attractive singular second order equations, Nonlinear Anal., 71, 4751-4757 (2009) · Zbl 1181.34051 · doi:10.1016/j.na.2009.03.049
[15] C. Q. Z. Wang Liu Wang, Periodic bouncing solutions for Hill’s type sub-linear oscillators with obstacles, Commun. Pure Appl. Anal., 20, 281-300 (2021) · Zbl 1512.34091 · doi:10.3934/cpaa.2020266
[16] C. D. Q. Wang Qian Liu, Impact oscillators of Hill’s type with indefinite weight: Periodic and chaotic dynamics, Discrete Contin. Dyn. Syst., 36, 2305-2328 (2016) · Zbl 1329.34079 · doi:10.3934/dcds.2016.36.2305
[17] Z. Q. D. Wang Liu Qian, Existence of quasi-periodic solutions and littlewood’s boundedness problem of sub-linear impact oscillators, Nonlinear Anal., 74, 5606-5617 (2011) · Zbl 1227.34019 · doi:10.1016/j.na.2011.05.046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.