×

The number of limit cycles of a kind of piecewise quadratic systems with switching curve \(y = x^m\). (English) Zbl 1541.34055

The authors consider the following real planar autonomous piecewise differential system: \[ \begin{array}{lll} \left( \begin{array}{c} \dot{x} \\ \dot{y} \end{array} \right) & = & \left\{ \begin{array}{ll} \displaystyle \left( y + \epsilon f_1^{+}(x,y) + \epsilon^2 f_2^{+}(x,y), -x + \epsilon g_1^{+}(x,y) + \epsilon^2 g_2^{+}(x,y) \right) \text{ for }&y \geq x^m, \vspace{0.2cm} \\ \displaystyle \left( y + \epsilon f_1^{-}(x,y) + \epsilon^2 f_2^{-}(x,y), -x + \epsilon g_1^{-}(x,y) + \epsilon^2 g_2^{-}(x,y) \right)\text{ for } &y < x^m, \end{array} \right\} \end{array} \] where \(0< |\epsilon|<<1\), \(m \in \mathbb{N}\), \(m \geq 1\) and \[ \begin{array}{ll} \displaystyle f_1^{\pm} (x,y) \, = \, \sum_{i+j=0}^{2} a_{ij}^{\pm} x^i y^j, & \quad \displaystyle g_1^{\pm} (x,y) \, = \, \sum_{i+j=0}^{2} b_{ij}^{\pm} x^i y^j, \vspace{0.2cm} \\ \displaystyle f_2^{\pm} (x,y) \, = \, \sum_{i+j=0}^{2} c_{ij}^{\pm} x^i y^j, & \quad \displaystyle g_2^{\pm} (x,y) \, = \, \sum_{i+j=0}^{2} d_{ij}^{\pm} x^i y^j \end{array} \] with \(a_{ij}\), \(b_{ij}\), \(c_{ij}\) and \(d_{ij}\) real parameters. They study the bifurcation of limit cycles from the period annulus corresponding to the value \(\epsilon=0\).

The authors first give the cases where the first Melnikov function is identically null and then, under this assumption, they provide the expression of the second Melnikov function. Denote by \(Z(m)\) the maximum number of limit cycles that bifurcate from the period annulus of the previous system with \(\epsilon=0\) by using up to the second-order Melnikov function. The authors prove the following results:
(i)
If \(m\) is odd, then \(Z(m)=15\);
(ii)
\(Z(2) \, = \, 9\);
(iii)
\(13 \leq Z(4) \leq 19\);
(iv)
\(Z(2k) \geq 14\) for \(k \geq 3\).
These results improve some previously published theorems.

MSC:

34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34A36 Discontinuous ordinary differential equations
34E10 Perturbations, asymptotics of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
Full Text: DOI

References:

[1] Andrade, K.; Cespedes, O.; Cruz, D.; Novaes, D. D., Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear switching curve, J. Differ. Equ., 287, 1-36, 2021 · Zbl 1466.34023
[2] Bastos, J.; Buzzi, C. A.; Llibre, J.; Novaes, D. D., Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold, J. Differ. Equ., 267, 3748-3767, 2019 · Zbl 1423.34034
[3] Cen, X.; Liu, C.; Yang, L.; Zhang, M., Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential systems, J. Differ. Equ., 265, 6083-6126, 2018 · Zbl 1444.34032
[4] Coll, B.; Gasull, A.; Prohens, R., Bifurcation of limit cycles from two families of centers, Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal., 12, 275-287, 2005 · Zbl 1074.34038
[5] da Cruz, L. P.C.; Novaes, D. D.; Torregrosa, J., New lower bound for the Hilbert number in piecewise quadratic differential systems, J. Differ. Equ., 266, 4170-4203, 2019 · Zbl 1435.37075
[6] da Cruz, L. P.C.; Torregrosa, J., Bifurcation of limit cycles in piecewise quadratic differential systems with an invariant straight line, J. Math. Anal. Appl., 514, Article 126256 pp., 2022 · Zbl 1503.34088
[7] de Carvalho Braga, D.; Mello, L. F., Arbitrary number of limit cycles for planar discontinuous piecewise linear differential systems with two zones, Electron. J. Differ., 2015, 228, 2015 · Zbl 1337.34033
[8] Grau, M.; Mañosas, F.; Villadelprat, J., A Chebyshev criterion for Abelian integrals, Trans. Am. Math. Soc., 363, 109-129, 2011 · Zbl 1217.34052
[9] Guo, Z.; Llibre, J., Limit cycles of a class of discontinuous piecewise differential systems separated by the curve \(y = x^n\) via averaging theory, Int. J. Bifurc. Chaos, 32, Article 2250187 pp., 2022 · Zbl 1510.34049
[10] Guo, Z.; Llibre, J., Non-equivalence between the Melnikov and the averaging methods for nonsmooth differential systems, Qual. Theory Dyn. Syst., 21, 114, 2022 · Zbl 1506.34028
[11] Han, M.; Sheng, L., Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5, 809-815, 2015 · Zbl 1451.37073
[12] Li, C.; Zhang, Z., Remarks on 16th weak Hilbert problem for \(n = 2\), Nonlinearity, 15, 1975-1992, 2002 · Zbl 1219.34042
[13] Liu, X.; Han, M., Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems, Int. J. Bifurc. Chaos, 20, 1379-1390, 2010 · Zbl 1193.34082
[14] Liu, W.; Han, M., Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications, Discrete Contin. Dyn. Syst., Ser. S, 16, 498-532, 2023 · Zbl 1521.37056
[15] Llibre, J.; Mereu, A.; Novaes, D. D., Averaging theory for discontinuous piecewise differential systems, J. Differ. Equ., 258, 4007-4032, 2015 · Zbl 1347.37097
[16] Llibre, J.; Tang, Y., Limit cycles of discontinuous piecewise quatratic and cubic polynomial perturbations of a linear center, Discrete Contin. Dyn. Syst., Ser. B, 24, 1769-1784, 2019 · Zbl 1478.34040
[17] Novaes, D. D.; Torregrosa, J., On extended Chebyshev systems with positive accuracy, J. Math. Anal. Appl., 448, 171-186, 2017 · Zbl 1375.37064
[18] Ramirez, O.; Alves, A. M., Bifurcation of limit cycles by perturbing piecewise non-Hamiltonian systems with nonlinear switching manifold, Nonlinear Anal., Real World Appl., 57, Article 103188 pp., 2021 · Zbl 1458.37061
[19] Z. Si, L. Zhao, R. Jia, The exact cyclicity of period annulus of global linear center with an algebraic switching curve, submitted for publication.
[20] Tian, H.; Han, M., Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve, Discrete Contin. Dyn. Syst., Ser. B, 26, 5581-5599, 2021 · Zbl 1486.37031
[21] Wang, J.; Zhao, L.; Zhou, J., On the number of limit cycles bifurcating from the linear center with an algebraic switching curve, Qual. Theory Dyn. Syst., 21, 87, 2022 · Zbl 1506.34050
[22] Xiong, Y.; Han, M.; Romanovski, V., The maximal number of limit cycles in perturbations of piecewise linear Hamiltonian systems with two saddles, Int. J. Bifurc. Chaos, 27, Article 1750126 pp., 2017 · Zbl 1377.34042
[23] Yang, P.; Françoise, J.; Yu, J., Second order Melnikov functions of piecewise Hamiltonian systems, J. Bifurc. Chaos, 30, Article 2050016 pp., 2020 · Zbl 1436.37071
[24] Yang, P.; Yang, Y.; Yu, J., Up to second order Melnikov functions for general piecewise Hamiltonian systems with nonregular separation line, J. Differ. Equ., 285, 583-606, 2021 · Zbl 1469.34049
[25] Yang, J.; Zhao, L., Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations, J. Differ. Equ., 264, 5734-5757, 2018 · Zbl 1390.34082
[26] Zhang, X.; Xiong, Y., The number of limit cycles by perturbing a piecewise linear system with three zones, Commun. Pure Appl. Anal., 21, 1833-1855, 2022 · Zbl 1501.34021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.