×

Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals. (English) Zbl 1541.26040

Summary: In this paper, we present a multiplicative fractional integral identity. Based upon it, we establish the Hermite-Hadamard type inequalities for multiplicatively convex functions via multiplicative Riemann-Liouville fractional integrals. We also give some applications to special means of real numbers in the framework of multiplicative calculus. To make the results obtained here more intuitive for the readers, we provide some examples for suitable choices of multiplicative convex functions and their graphical descriptions.

MSC:

26D15 Inequalities for sums, series and integrals
26A33 Fractional derivatives and integrals
26A51 Convexity of real functions in one variable, generalizations
Full Text: DOI

References:

[1] Grossman, M.; Katz, R., Non-Newtonian Calculus (1972), Lee Press: Lee Press Pigeon Cove, MA · Zbl 0228.26002
[2] Ali, M. A.; Budak, H.; Fec̆kan, M.; Khan, S., A new version of \(q\)-Hermite-Hadamard’s midpoint and trapezoid type inequalities for convex functions. Math. Slovaca, 2, 369-386 (2023) · Zbl 1508.26012
[3] Kórus, P., An extension of the Hermite-Hadamard inequality for convex and \(s\)-convex functions. Aequationes Math., 3, 527-534 (2019) · Zbl 1416.26047
[4] Zhang, Y.; Du, T. S.; Wang, H.; Shen, Y. J., Different types of quantum integral inequalities via \(( \alpha , m )\)-convexity. J. Inequal. Appl. (2018), 24 p · Zbl 1498.26077
[5] Xi, B. Y.; Gao, D. D.; Qi, F., Integral inequalities of Hermite-Hadamard type for \(( \alpha , s )\)-convex and \(( \alpha , s , m )\)-convex functions. Ital. J. Pure Appl. Math., 499-510 (2020)
[6] Saleh, W.; Lakhdari, A.; Kiliçman, A.; Frioui, A.; Meftah, B., Some new fractional Hermite-Hadamard type inequalities for functions with co-ordinated extended \(( s , m )\)-prequasiinvex mixed partial derivatives. Alex. Eng. J., 261-267 (2023)
[7] Delavar, M. R.; De La Sen, M., A mapping associated to \(h\)-convex version of the Hermite-Hadamard inequality with applications. J. Math. Inequal., 2, 329-335 (2020) · Zbl 1444.26027
[8] Eken, Z.; Kemali, S.; Tınaztepe, G.; Adilov, G., The Hermite-Hadamard inequalities for \(p\)-convex functions. Hacet. J. Math. Stat., 5, 1268-1279 (2021) · Zbl 1499.26031
[9] Latif, M. A., Weighted Hermite-Hadamard type inequalities for differentiable GA-convex and geometrically quasiconvex mappings. Rocky Mountain J. Math., 6, 1899-1908 (2021) · Zbl 1498.26055
[10] Andrić, M.; Pečarić, J., On \(( h , g ; m )\)-convexity and the Hermite-Hadamard inequality. J. Convex Anal., 1, 257-268 (2022) · Zbl 1497.26009
[11] Du, T. S.; Yuan, X. M., On the parameterized fractal integral inequalities and related applications. Chaos Solitons Fractals (2023), 22 p
[12] Budak, H.; Ali, M. A.; Tarhanaci, M., Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl., 3, 899-910 (2020) · Zbl 1450.26008
[13] Nikodem, K.; Rajba, T., On Hermite-Hadamard inequalities for \(( k , h )\)-convex set-valued maps. Math. Inequal. Appl., 2, 467-475 (2022) · Zbl 1505.26046
[14] Kara, H.; Ali, M. A.; Budak, H., Hermite-Hadamard-Mercer type inclusions for interval-valued functions via Riemann-Liouville fractional integrals. Turk. J. Math., 6, 2193-2207 (2022) · Zbl 1495.26020
[15] Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B. T., Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math., 120-129 (2019) · Zbl 1426.26008
[16] Ali, M. A.; Köbis, E., Some new \(q\)-Hermite-Hadamard-Mercer inequalities and related estimates in quantum calculus. J. Nonlinear Var. Anal., 1, 49-66 (2023) · Zbl 07634123
[17] Işcan, İ., Weighted Hermite-Hadamard-Mercer type inequalities for convex functions. Numer. Methods Partial Diff. Equ., 1, 118-130 (2021) · Zbl 1540.26011
[18] Khan, M. A.; Adnan; Saeed, T.; Nwaeze, E. R., A new advanced class of convex functions with related results. Axioms, 2 (2023), 14 p
[19] Liao, J. G.; Wu, S. H.; Du, T. S., The sugeno integral with respect to \(\alpha \)-preinvex functions. Fuzzy Sets and Systems, 102-114 (2020) · Zbl 1464.26022
[20] Srivastava, H. M.; Mehrez, S.; Sitnik, S. M., Hermite-Hadamard-type integral inequalities for convex functions and their applications. Mathematics, 17 (2022), 13 p
[21] Tseng, K. L.; Hwang, S. R.; Dragomir, S. S., Fejér-type inequalities(I). J. Inequal. Appl. (2010), 7 p · Zbl 1204.26045
[22] Latif, M. A.; Dragomir, S. S., New inequalities of Hermite-Hadamard type for functions whose derivatives in absolute value are convex with applications. Acta Univ. M. Belii Ser. Math., 27-42 (2013) · Zbl 1300.26007
[23] Sarikaya, M. Z.; Set, E.; Yaldiz, H.; Başak, N., Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Modelling, 9-10, 2403-2407 (2013) · Zbl 1286.26018
[24] Mihai, M. V., Some Hermite-Hadamard type inequalities via Riemann-Liouville fractional calculus. Tamkang J. Math., 4, 411-416 (2013) · Zbl 1290.26014
[25] Ali, M. A.; Budak, H.; Fec̆kan, M.; Patanarapeelert, N.; Sitthiwirattham, T., On some Newton’s type inequalities for differentiable convex functions via Riemann-Liouville fractional integrals. Filomat, 11, 3427-3441 (2023)
[26] Ertuǧral, F.; Sarikaya, M. Z., Simpson type integral inequalities for generalized fractional integral. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 4, 3115-3124 (2019) · Zbl 1426.26011
[27] Mohammed, P. O.; Sarikaya, M. Z.; Baleanu, D., On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals. Symmetry, 4 (2020), 17 p
[28] Set, E.; Butt, S. I.; Akdemir, A. O.; Karaoǧlan, A.; Abdeljawad, T., New integral inequalities for differentiable convex functions via Atangana-Baleanu fractional integral operators. Chaos Solitons Fractals (2021), 14 p
[29] Butt, S. I.; Yousaf, S.; Akdemir, A. O.; Dokuyucu, M. A., New Hadamard-type integral inequalities via a general form of fractional integral operators. Chaos Solitons Fractals (2021), 14 p · Zbl 1485.26023
[30] Butt, S. I.; Akdemir, A. O.; Nasir, J.; Jarad, F., Some Hermite-Jensen-Mercer like inequalities for convex functions through a certain generalized fractional integrals and related results. Miskolc Math. Notes, 2, 689-715 (2020) · Zbl 1474.26093
[31] Dragomir, S. S., Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of \(h\)-convex functions. Math. Methods Appl. Sci., 3, 2364-2380 (2021) · Zbl 1472.26007
[32] Du, T. S.; Luo, C. Y.; Cao, Z. J., On the Bullen-type inequalities via generalized fractional integrals and their applications. Fractals-Complex Geom. Patterns Scaling Nat. Soc., 7 (2021), 20 p · Zbl 1484.26023
[33] Du, T. S.; Zhou, T. C., On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings. Chaos Solitons Fractals (2022), 19 p · Zbl 1506.26004
[34] Ekinci, A.; Özdemir, M. E., Some new integral inequalities via Riemann-Liouville integral operators. Appl. Comput. Math., 3, 288-295 (2019) · Zbl 1434.26048
[35] Kunt, M.; Karapinar, D.; Turhan, S.; Isçan, İ., The left Riemann-Liouville fractional Hermite-Hadamard type inequalities for convex functions. Math. Slovaca, 4, 773-784 (2019) · Zbl 1498.26021
[36] Sitthiwirattham, T.; Nonlaopon, K.; Ali, M. A.; Budak, H., Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions. Fractal Fract., 3 (2022), 15 p
[37] Zhou, T. C.; Yuan, Z. R.; Du, T. S., On the fractional integral inclusions having exponential kernels for interval-valued convex functions. Math. Sci., 2, 107-120 (2023) · Zbl 1512.26029
[38] Abdeljawad, T.; Grossman, M., On geometric fractional calculus. J. Semigroup Theory Appl. (2016), 14 p
[39] Ali, M. A.; Abbas, M.; Zhang, Z. Y.; Sial, I. B.; Arif, R., On integral inequalities for product and quotient of two multiplicatively convex functions. Asian Res. J. Math., 3, 1-11 (2019)
[40] Budak, H.; Özçelik, K., On Hermite-Hadamard type inequalities for multiplicative fractional integrals. Miskolc Math. Notes, 1, 91-99 (2020) · Zbl 1463.26028
[41] Bashirov, A. E.; Mısırlı, E.; Tandoğdu, Y.; Özyapıcı, A., On modeling with multiplicative differential equations. Appl. Math. -J. Chin. Univ. Ser. B, 4, 425-438 (2011) · Zbl 1265.00007
[42] Florack, L.; Assen, H. V., Multiplicative calculus in biomedical image analysis. J. Math. Imaging Vision, 1, 64-75 (2012) · Zbl 1255.92014
[43] Singh, G.; Bhalla, S.; Behl, R., A multiplicative calculus approach to solve applied nonlinear models. Math. Comput. Appl. (2023), 11 p
[44] Özyapıcı, A.; Sensoy, Z. B.; Karanfiller, T., Effective root-finding methods for nonlinear equations based on multiplicative calculi. J. Math. (2016), 7 p · Zbl 1487.65054
[45] Özyapıcı, A., Effective numerical methods for non-linear equations. Int. J. Appl. Comput. Math. (2020), 8 p · Zbl 1461.65090
[46] Shah, F. A.; UL-Haq, E.; Noor, M. A.; Waseem, M., Some novel schemes by using multiplicative calculus for nonlinear equations. TWMS J. App. Eng. Math., 2, 723-733 (2023)
[47] Singh, G.; Bhalla, S., Two step Newton’s method with multiplicative calculus to solve the non-linear equations. J. Comput. Anal. Appl., 2, 171-179 (2023)
[48] Yavuz, E., On the convergence of sequences in \(\mathbb{R}^+\) through weighted geometric means via multiplicative calculus and application to intuitionistic fuzzy numbers. J. Taibah Univ. Sci., 1, 442-450 (2022)
[49] Ali, M. A.; Budak, H.; Sarikaya, M. Z.; Zhang, Z. Y., Ostrowski and Simpson type inequalities for multiplicative integrals. Proyecciones, 3, 743-763 (2021) · Zbl 1478.26015
[50] Ali, M. A.; Abbas, M.; Budak, H.; Kashuri, A., Some new Hermite-Hadamard integral inequalities in multiplicative calculus. TWMS J. App. Eng. Math., 4, 1183-1193 (2021)
[51] Khan, S.; Budak, H., On midpoint and trapezoid type inequalities for multiplicative integrals. Mathematica, 87, 95-108 (2022) · Zbl 07858010
[52] Chasreechai, S.; Ali, M. A.; Naowarat, S.; Sitthiwirattham, T.; Nonlaopon, K., On some Simpson’s and Newton’s type of inequalities in multiplicative calculus with applications. AIMS Math., 2, 3885-3896 (2023)
[53] Meftah, B., Maclaurin type inequalities for multiplicatively convex functions. Proc. Amer. Math. Soc., 5, 2115-2125 (2023) · Zbl 1526.26004
[54] Xie, J. Q.; Ali, M. A.; Sitthiwirattham, T., Some new midpoint and trapezoidal type inequalities in multiplicative calculus with applications. Filomat, 20, 6665-6675 (2023)
[55] Özcan, S., Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Math., 2, 1505-1518 (2020) · Zbl 1484.26084
[56] Özcan, S., Hermite-Hadamard type inequalities for multiplicatively \(s\)-convex functions. Cumhuriyet Sci. J., 1, 245-259 (2020)
[57] Özcan, S., Hermite-Hadamard type inequalities for multiplicatively \(h\)-preinvex functions. Turk. J. Anal. Number Theory, 3, 65-70 (2021)
[58] Fu, H.; Peng, Y.; Du, T. S., Some inequalities for multiplicative tempered fractional integrals involving the \(\lambda \)-incomplete gamma functions. AIMS Math., 7, 7456-7478 (2021) · Zbl 1485.26034
[59] Peng, Y.; Fu, H.; Du, T. S., Estimations of bounds on the multiplicative fractional integral inequalities having exponential kernels. Commun. Math. Stat. (2022)
[60] Boulares, H.; Meftah, B.; Moumen, A.; Shafqat, R.; Saber, H.; Alraqad, T.; Ali, E. E., Fractional multiplicative Bullen-type inequalities for multiplicative differentiable functions. Symmetry, 2 (2023), 12 p
[61] Kadakal, H.; Kadakal, M., Multiplicatively preinvex \(P\)-functions. J. Sci. Arts, 1, 21-32 (2023)
[62] Kashuri, A.; Sahoo, S. K.; Aljuaid, M.; Tariq, M.; De La Sen, M., Some new Hermite-Hadamard type inequalities pertaining to generalized multiplicative fractional integrals. Symmetry, 4 (2023), 14 p
[63] Meftah, B.; Lakhdari, A., Dual Simpson type inequalities for multiplicatively convex functions. Filomat, 22, 7673-7683 (2023)
[64] Moumen, A.; Boulares, H.; Meftah, B.; Shafqat, R.; Alraqad, T.; Ali, E. E.; Khaled, Z., Multiplicatively Simpson type inequalities via fractional integral. Symmetry, 2 (2023), 13 p
[65] Yener, G.; Emiroglu, I., A \(q\)-analogue of the multiplicative calculus: \(q\)-multiplicative calculus. Discret. Contin. Dyn. Syst.-Ser. S, 6, 1435-1450 (2015) · Zbl 1332.05019
[66] Bashirov, A. E.; Kurpınar, E. M.; Özyapıcı, A., Multiplicative calculus and its applications. J. Math. Anal. Appl., 1, 36-48 (2008) · Zbl 1129.26007
[67] Niculescu, C. P., The Hermite-Hadamard inequality for log-convex functions. Nonlinear Anal. Theory Methods Appl., 2, 662-669 (2012) · Zbl 1236.26010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.