×

Flag-transitive, point-imprimitive symmetric \(2\)-\((v, k, \lambda)\) designs with \(k > \lambda (\lambda - 3) / 2\). (English) Zbl 1541.05023

Summary: Let \(\mathcal{D} = (\mathcal{P}, \mathcal{B})\) be a symmetric 2-\((v, k, \lambda)\) design admitting a flag-transitive, point-imprimitive automorphism group \(G\) that leaves invariant a non-trivial partition \(\Sigma\) of \(\mathcal{P}\). C. E. Praeger and S. Zhou, J. Comb. Theory, Ser. A 113, No. 7, 1381–1395 (2006; Zbl 1106.05012)] have shown that, there is a constant \(k_0\) such that, for each \(B \in \mathcal{B}\) and \(\Delta \in \Sigma\), the size of \(|B \cap \Delta |\) is either 0 or \(k_0\). In the present paper we show that, if \(k > \lambda (\lambda - 3) / 2\) and \(k_0 \geqslant 3\), \(\mathcal{D}\) is isomorphic to one of the known flag-transitive, point-imprimitive symmetric 2-designs with parameters \((45, 12, 3)\) or \((96, 20, 4)\).

MSC:

05B30 Other designs, configurations
05B05 Combinatorial aspects of block designs
20D45 Automorphisms of abstract finite groups
20B10 Characterization theorems for permutation groups
20B30 Symmetric groups

Citations:

Zbl 1106.05012
Full Text: DOI

References:

[1] Alavi, S. H.; Burness, T. C., Large subgroups of simple groups, J. Algebra, 421, 187-233, 2015 · Zbl 1308.20012
[2] Aschbacher, M., On the maximal subgroups of the finite classical groups, Invent. Math., 76, 469, 514, 1984 · Zbl 0537.20023
[3] Bamberg, J.; Penttila, T., Overgroups of cyclic Sylow subgroups of linear groups, Commun. Algebra, 36, 2503-2543, 2008 · Zbl 1162.20033
[4] Beth, T.; Jungnickel, D.; Lenz, H., Design Theory: Vol. I, Encyclopedia of Mathematics and Its Applications, vol. 69, 1999, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0945.05004
[5] Blau, H. I., On trivial intersection of cyclic Sylow subgroup, Proc. Am. Math. Soc., 94, 572-576, 1985 · Zbl 0575.20014
[6] Bray, J.; Holt, D. F.; Roney-Dougal, C. M., The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. With a Foreword by Martin Liebeck, London Mathematical Society Lecture Note Series, vol. 407, 2013, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1303.20053
[7] Camina, A. R.; Zieschang, P. H., On the normal structure of the flag transitive automorphism groups of 2-designs, J. Lond. Math. Soc. (2), 41, 555-564, 1990 · Zbl 0728.20002
[8] Cameron, P. J.; Praeger, C. E., Constructing flag-transitive, point-imprimitive designs, J. Algebraic Comb., 43, 755-769, 2016 · Zbl 1339.05043
[9] Conway, J. H.; Curtis, R. T.; Parker, R. A.; Wilson, R. A., An Atlas of Finite Groups, 1985, Clarendon Press: Clarendon Press Oxford · Zbl 0568.20001
[10] Dembowski, P., Finite Geometries, 1968, Springer: Springer Berlin, Heidelberg, New York · Zbl 0159.50001
[11] Dempwolff, U., Primitive rank 3 groups on symmetric designs, Des. Codes Cryptogr., 22, 191-207, 2001 · Zbl 0972.05008
[12] Devillers, A.; Liang, H.; Praeger, C. E.; Xia, B., On flag-transitive \(2-(v, k, 2)\) designs, J. Comb. Theory, Ser. A, 177, Article 105309 pp., 2021 · Zbl 1448.05027
[13] Dietrich, H.; Lee, M.; Popiel, T., The maximal subgroups of the Monster, ArXiv
[14] Dixon, J. D.; Mortimer, B., Permutation Groups, 1966, Springer Verlag: Springer Verlag New York
[15] Foulser, D. A., The flag transitive collineation group of the finite Desarguesian affine planes, Can. J. Math., 16, 443-472, 1964 · Zbl 0119.16203
[16] Foulser, D. A., Solvable flag transitive affine groups, Math. Z., 86, 191-204, 1964 · Zbl 0144.01803
[17] GAP—groups, algorithms, and programming, version 4.11.1, 2021
[18] Georestein, D., Finite Groups, 1980, Chelsea Publishing Company: Chelsea Publishing Company New York, N.Y. · Zbl 0463.20012
[19] Guralnick, R. M., Subgroups of prime power index in a simple group, J. Algebra, 81, 304-311, 1983 · Zbl 0515.20011
[20] Hering, C., Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geom. Dedic., 2, 425-460, 1974 · Zbl 0292.20045
[21] Hussain, Q. M., On the totality of the solutions for the symmetrical incomplete block designs \(\lambda = 2, k = 5\) or 6, Sankhya, 7, 204-208, 1945 · Zbl 0060.31407
[22] James, G. D., On the minimal dimensions of irreducible representations of symmetric, Math. Proc. Camb. Philos. Soc., 94, 417-424, 1983 · Zbl 0544.20011
[23] Kantor, W. M., Automorphism groups of designs, Math. Z., 109, 246-252, 1969 · Zbl 0212.03504
[24] Kantor, W. M., Classification of 2-transitive symmetric designs, Graphs Comb., 1, 165-166, 1985 · Zbl 0594.05009
[25] Kantor, W. M., Homogeneous designs and geometric lattices, J. Comb. Theory, Ser. A, 38, 66-74, 1985 · Zbl 0559.05015
[26] Kantor, W. M., Primitive permutation groups of odd degree, and an application to finite projective planes, J. Algebra, 106, 15-45, 1987 · Zbl 0606.20003
[27] Kleidman, P.; Liebeck, M., The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, vol. 129, 1990, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0697.20004
[28] Lander, E. S., Symmetric Designs: An Algebraic Approach, London Mathematical Society Lecture Note Series, vol. 74, 1983, Cambridge University Press: Cambridge University Press Cambridge · Zbl 0502.05010
[29] Law, M.; Praeger, C. E.; Reichard, S., Flag-transitive symmetric \(2-(96, 20, 4)\)-designs, J. Comb. Theory, Ser. A, 116, 1009-1022, 2019 · Zbl 1187.05087
[30] Liebeck, M. W.; Saxl, J., The primitive permutation groups of odd degree, J. Lond. Math. Soc., 31, 250-264, 1985 · Zbl 0573.20004
[31] Liebeck, M. W.; Saxl, J.; Seitz, G. M., Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. Lond. Math. Soc., 65, 297-325, 1992 · Zbl 0776.20012
[32] Liebeck, M. W., The classification of finite linear spaces with flag-transitive automorphism groups of affine type, J. Comb. Theory, Ser. A, 84, 196-235, 1998 · Zbl 0918.51009
[33] Lüneburg, H., Translation Planes, 1980, Springer: Springer Berlin · Zbl 0446.51003
[34] Mandić, J.; Šubasić, A., Flag-transitive and point-imprimitive symmetric designs with \(\lambda \leqslant 10\), J. Comb. Theory, Ser. A, 189, Article 105620 pp., 2022 · Zbl 1494.05017
[35] Montinaro, A.; Francot, E., On Flag-transitive \(2- k^2, k, \lambda\) designs with \(\lambda | k\), J. Comb. Des., 30, 653-670, 2022 · Zbl 07840169
[36] Montinaro, A.; Francot, E., A classification of the flag-transitive \(2-(v, 3, \lambda)\) designs with \(v \equiv 1, 3( \operatorname{mod} 6)\) and \(v \equiv 6( \operatorname{mod} \lambda)\)
[37] Montinaro, A., Classification of the non-trivial \(2-( k^2, k, \lambda)\) designs, with \(\lambda | k\), admitting a flag-transitive almost simple automorphism group, J. Comb. Theory, Ser. A, 195, Article 105710 pp., 2023 · Zbl 1505.05025
[38] Montinaro, A., A classification of flag-transitive \(2-( k^2, k, \lambda)\) designs with \(\lambda | k\), J. Comb. Theory, Ser. A, 197, Article 105750 pp., 2023 · Zbl 1512.05066
[39] Nandi, H. K., Enumerations of nonisomorphic solutions of balanced incomplete block designs, Sankhya, 7, 305-312, 1946 · Zbl 0060.31411
[40] Praeger, C. E., The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair, Des. Codes Cryptogr., 44, 115-132, 2007 · Zbl 1125.05017
[41] Praeger, C. E.; Schneider, C., Permutation Groups and Cartesian Decompositions, London Mathematical Society Lecture Note Series, 2018, Cambridge University Press: Cambridge University Press Cambridge · Zbl 1428.20002
[42] Praeger, C. E.; Zhou, S., Imprimitive flag-transitive symmetric designs, J. Comb. Theory, Ser. A, 113, 1381-1395, 2006 · Zbl 1106.05012
[43] Ribenboim, P., Catalan’s Conjecture: Are 8 and 9 the Only Consecutive Powers?, 1994, Academic Press, Inc.: Academic Press, Inc. Boston · Zbl 0824.11010
[44] O’Reilly Reguerio, E., On primitivity and reduction for flag-transitive symmetric designs, J. Comb. Theory, Ser. A, 109, 135-148, 2005 · Zbl 1055.05014
[45] Sane, S. S., On a class of symmetric designs, (Combinatorics and Applications. Combinatorics and Applications, Calcutta, 1982, 1984, Indian Statist. Inst.: Indian Statist. Inst. Calcutta), 292-302 · Zbl 0703.05015
[46] Saxl, J., On finite linear spaces with almost simple flag-transitive automorphism groups, J. Comb. Theory, Ser. A, 100, 322-348, 2002 · Zbl 1031.51009
[47] Scott, R.; Styer, R., On \(p^x - q^y = c\) and related three term exponential Diophantine equations with prime bases, J. Number Theory, 105, 212-234, 2004 · Zbl 1080.11032
[48] Vasilyev, A. V., Minimal permutation representations of finite simple exceptional groups of types \(G_2\) and \(F_4\), Algebra Log., 35, 663-684, 1996 · Zbl 0880.20006
[49] Vasilyev, A. V., Minimal permutation representations of finite simple exceptional groups of types \(E_6, E_7\) and \(E_8\), Algebra Log., 36, 518-530, 1997 · Zbl 0941.20006
[50] Vasilyev, A. V., Minimal permutation representations of finite simple exceptional groups of twisted type, Algebra Log., 37, 17-35, 1998 · Zbl 0941.20007
[51] Wagner, A., On finite affine line transitive planes, Math. Z., 87, 1-11, 1965 · Zbl 0131.36804
[52] Wilson, R. A., Maximal subgroups of automorphism groups of simple groups, J. Lond. Math. Soc., 32, 460-466, 1985 · Zbl 0562.20006
[53] Wilson, R. A., Maximal subgroups of sporadic groups, (Guralnick, R.; Hiss, G.; Lux, K.; Huu Tiep, P., Finite Simple Groups: Thirty Years of the Atlas and Beyond. Finite Simple Groups: Thirty Years of the Atlas and Beyond, Contemporary Mathematics, vol. 694, 2017), 58-72 · Zbl 1448.20018
[54] Wilson, R.; Walsh, P.; Tripp, J.; Suleiman, I.; Parker, R.; Norton, S.; Nickerson, S.; Linton, S.; Bray, J.; Abbott, R., An atlas of finite groups representation- version 3, available at
[55] Zhong, C.; Zhou, S., On flag-transitive automorphism groups of 2-designs, Discrete Math., 346, Article 113227 pp., 2023 · Zbl 1504.05030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.