×

Global dynamics of an age-structured model for HIV viral dynamics with latently infected T cells. (English) Zbl 1540.92079

Summary: This study focuses on an age-structured population model which describes the in host dynamics of HIV/AIDS. This model also considers the proportion of latently infected CD4+ T cells by HIV. After the formulation of the model, we derive steady-state solutions of the model. By constructing an appropriate Lyapunov function, we check the stability of infection-free steady-state. We show that if reproduction number \(R_0\) is less than 1, then the infection-free equilibrium is stable. We also study the role of anti-retroviral therapy to slow down the process of HIV in the human body. We consider our model with anti-retroviral therapy and again check the global stability of the infection-free steady state for better comparison. We also solve our model numerically to study the primary spread of HIV virus.

MSC:

92C60 Medical epidemiology
92-10 Mathematical modeling or simulation for problems pertaining to biology
Full Text: DOI

References:

[1] Abdel-Aty, A. H.; Khater, M. M.; Dutta, H.; Bouslimi, J.; Omri, M., Computational solutions of the HIV-1 infection of \(\operatorname{CD} 4^+\) T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy, Chaos Solitons Fractals, 139, Article 110092 pp. (2020)
[2] Alshorman, A.; Samarasinghe, C.; Lu, W.; Rong, L., An HIV model with age-structured latently infected cells, J. Biol. Dyn., 11, 192-215 (2017) · Zbl 1447.92191
[3] Babaei, A.; Jafari, H.; Ahmadi, M., A fractional order HIV/AIDS model based on the effect of screening of unaware infectives, Math. Methods Appl. Sci., 42, 2334-2343 (2019) · Zbl 1415.92165
[4] Cushing, J. M., Existence and stability of equilibria in age-structured population dynamics, J. Math. Biol., 20, 259-276 (1984) · Zbl 0553.92014
[5] Fritz, J., Partial Differential Equations (1991), Springer
[6] Gao, Y.; Wang, J., Threshold dynamics of a delayed nonlocal reaction-diffusion HIV infection model with both cell-free and cell-to-cell transmissions, J. Math. Anal. Appl., 488, Article 124047 pp. (2020) · Zbl 1439.37086
[7] Goyal, M.; Baskonus, H. M.; Prakash, A., Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model, Chaos Solitons Fractals, 139, Article 110096 pp. (2020)
[8] Hethcote, H. W., Age-structured epidemiology models and expressions for R0, (Mathematical Understanding of Infectious Disease Dynamics. Mathematical Understanding of Infectious Disease Dynamics, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. (2009)), 91-128
[9] Hsu, S. B., A survey of constructing Lyapunov functions for mathematical models in population biology, Taiwanese J. Math., 9, 151-173 (2005) · Zbl 1087.34031
[10] Huang, G.; Liu, X.; Takeuchi, Y., Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72, 25-38 (2012) · Zbl 1238.92032
[11] Huang, G.; Yokoi, H.; Takeuchi, Y.; Kajiwara, T.; Sasaki, T., Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics, Jpn. J. Ind. Appl. Math., 28, 383-411 (2011) · Zbl 1226.92049
[12] Ishaku, A.; Gazali, A. M.; Abdullahi, S. A.; Hussaini, N., Analysis and optimal control of an HIV model based on CD4 count, J. Math. Biol., 81, 209-241 (2020) · Zbl 1447.92432
[13] La Salle, J. P., (The Stability of Dynamical Systems. The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics (1976)) · Zbl 0364.93002
[14] Li, M. Y.; H, A. M., Shu impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70, 2434-2448 (2010) · Zbl 1209.92037
[15] Li, D.; Ma, W., Asymptotic properties of a HIV-1 infection model with time delay, J. Math. Anal. Appl., 335, 683-691 (2007) · Zbl 1130.34052
[16] Li, M. Y.; Shu, H., Global dynamics of an in-host viral model with intracellular delay, Bull. Math. Biol., 72, 1492-1505 (2010) · Zbl 1198.92034
[17] McLean, A. R.; Bostock, C. J., Scrapie infections initiated at varying doses: an analysis of 117 titration experiments, Philos. Trans. R. Soc. Lond. Ser. B., 355, 1043-1050 (2000)
[18] Michel, A. N.; Hou, L.; Liu, D., Stability of Dynamical Systems: Continuous, Discontinuous, and Discrete Systems (2008), Birkhauser · Zbl 1146.34002
[19] Nelson, P. W.; Gilchrist, M. A.; Coombs, D.; Hyman, J. M.; Perelson, A. S., An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1, 267-288 (2004) · Zbl 1060.92038
[20] O’Brien, S. J.; Hendrickson, S. L., Host genomic influences on HIV/AIDS, Genome Biol., 14, 201 (2013)
[21] Ostadzad, M. H.; Shahmorad, S.; Erjaee, G. H., Dynamical analysis of public health education on HIV/AIDS transmission, Math. Methods Appl. Sci., 38, 3601-3614 (2015) · Zbl 1337.37070
[22] Perelson, A. S., Modeling the interaction of the immune system with HIV, (Mathematical and Statistical Approaches to AIDS Epidemiology. Mathematical and Statistical Approaches to AIDS Epidemiology, Lecture Notes in Biomath., vol. 83 (1989), Springer: Springer Berlin), 350-370 · Zbl 0683.92001
[23] Rong, L.; Feng, Z.; Perelson, A. S., Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math., 67, 731-756 (2007) · Zbl 1121.92043
[24] Rong, L.; Gilchrist, M. A.; Feng, Z.; Perelson, A. S., Modeling within host HIV-1 dynamics and the evolution of drug resistance: Trade-offs between viral enzyme function and drug susceptibility, J. Theoret. Biol., 247, 804-818 (2007) · Zbl 1455.92087
[25] Sierra, S.; Kupfer, B.; Kaiser, R., Basics of virology of HIV-1 and its replication, J. Clin. Virol., 34, 233-244 (2005)
[26] Srivastava, P. K.; Banerjee, M.; Chandra, P., Modeling the drug therapy for HIV infection, J. Biol. Syst., 17, 213-223 (2009) · Zbl 1342.92103
[27] Srivastava, P. K.; Banerjee, M.; Chandra, P., A primary infection model for HIV and immune response with two discrete time delays, Differ. Equ. Dyn. Syst., 18, 385-399 (2010) · Zbl 1216.34084
[28] Srivastava, P. K.; Chandra, P., Modeling the dynamics of HIV and \(\operatorname{CD} 4^+\) T cells during primary infection, Nonlinear Anal. RWA, 11, 612-618 (2010) · Zbl 1181.37122
[29] Wang, L.; Li, M. Y., Mathematical analysis of the global dynamics of a model for HIV infection of \(\operatorname{CD} 4^+\) T cells, Math. Biosci., 200, 44-57 (2006) · Zbl 1086.92035
[30] Wang, S.; Song, X., Global properties for an age-structured within-host model with Crowley-Martin functional response, Int. J. Biomath., 10, Article 1750030 pp. (2017) · Zbl 1360.37185
[31] Wang, J.; Zhang, R.; Kuniya, T., Global dynamics for a class of age-infection HIV models with nonlinear infection rate, J. Math. Anal. Appl., 432, 289-313 (2015) · Zbl 1320.92077
[32] Wang, J.; Zhang, R.; Kuniya, T., Mathematical analysis for an age-structured HIV infection model with saturation infection rate, Electron. J. Differential Equations, 33, 1-19 (2015) · Zbl 1325.92085
[33] Xu, R., Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl., 375, 75-81 (2011) · Zbl 1222.34101
[34] Xu, J.; Geng, Y.; Zhou, Y., Global dynamics for an age-structured HIV virus infection model with cellular infection and antiretroviral therapy, Appl. Math. Comput., 305, 62-83 (2017) · Zbl 1411.92182
[35] Yan, D.; Fu, X., Analysis of an age-structured HIV infection model with logistic target-cell growth and antiretroviral therapy, IMA J. Appl. Math., 83, 1037-1065 (2018) · Zbl 1485.92171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.