×

Evolutionary dynamics of cooperation in neutral populations. (English) Zbl 1540.91005

Summary: Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner’s dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.

MSC:

91A22 Evolutionary games
92D25 Population dynamics (general)

References:

[1] Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena (1971), Oxford: Clarendon, Oxford
[2] Marro, J.; Dickman, R., Nonequilibrium Phase Transitions in Lattice Models (1999), Cambridge: Cambridge University Press, Cambridge
[3] Hinrichsen, H., Adv. Phys., 49, 815-958 (2000) · doi:10.1080/00018730050198152
[4] Castellano, C.; Fortunato, S.; Loreto, V., Rev. Mod. Phys., 81, 591-646 (2009) · doi:10.1103/RevModPhys.81.591
[5] Helbing, D.; Brockmann, D.; Chadefaux, T.; Donnay, K.; Blanke, U.; Woolley-Meza, O.; Moussaid, M.; Johansson, A.; Krause, J.; Perc, M., J. Stat. Phys., 158, 735-781 (2015) · Zbl 1332.91092 · doi:10.1007/s10955-014-1024-9
[6] D’Orsogna, M. R.; Perc, M., Phys. Life Rev., 12, 1-21 (2015) · doi:10.1016/j.plrev.2014.11.001
[7] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Rev. Mod. Phys., 87, 925 (2015) · doi:10.1103/RevModPhys.87.925
[8] Szabó, G.; Fáth, G., Phys. Rep., 446, 97-216 (2007) · doi:10.1016/j.physrep.2007.04.004
[9] Perc, M.; Szolnoki, A., BioSystems, 99, 109-125 (2010) · doi:10.1016/j.biosystems.2009.10.003
[10] Perc, M.; Gómez-Gardeñes, J.; Szolnoki, A.; Floría, L. M.; Moreno, L. M., J. R. Soc. Interface, 10 (2013) · doi:10.1098/rsif.2012.0997
[11] Wang, Z.; Wang, L.; Szolnoki, A.; Perc, M., Eur. Phys. J. B, 88, 124 (2015) · doi:10.1140/epjb/e2015-60270-7
[12] Zimmermann, M. G.; Eguíluz, V. M., Phys. Rev. E, 72 (2005) · doi:10.1103/PhysRevE.72.056118
[13] Santos, F. C.; Pacheco, J. M., Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.098104
[14] Santos, F. C.; Pacheco, J. M.; Lenaerts, T., Proc. Natl Acad. Sci. USA, 103, 3490-3494 (2006) · doi:10.1073/pnas.0508201103
[15] Pacheco, J. M.; Traulsen, A.; Nowak, M. A., Phys. Rev. Lett., 97 (2006) · doi:10.1103/PhysRevLett.97.258103
[16] Gómez-Gardeñes, J.; Campillo, M.; Floría, L. M.; Moreno, Y., Phys. Rev. Lett., 98 (2007) · doi:10.1103/PhysRevLett.98.108103
[17] Masuda, N., Proc. R. Soc. B, 274, 1815-1821 (2007) · doi:10.1098/rspb.2007.0294
[18] Fu, F.; Wu, T.; Wang, L., Phys. Rev. E, 79 (2009) · doi:10.1103/PhysRevE.79.036101
[19] Floría, L. M.; Gracia-Lázaro, C.; Gómez-Gardeñes, J.; Moreno, Y., Phys. Rev. E, 79 (2009) · doi:10.1103/PhysRevE.79.026106
[20] Lee, S.; Holme, P.; Wu, Z. X., Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.028702
[21] Tanimoto, J.; Brede, M.; Yamauchi, A., Phys. Rev. E, 85 (2012) · doi:10.1103/PhysRevE.85.032101
[22] Mobilia, M., Phys. Rev. E, 86 (2012) · doi:10.1103/PhysRevE.86.011134
[23] Szolnoki, A.; Perc, M., Europhys. Lett., 113, 58004 (2016) · doi:10.1209/0295-5075/113/58004
[24] Fu, F.; Chen, X., New J. Phys., 19 (2017) · doi:10.1088/1367-2630/aa78c1
[25] Battiston, F.; Perc, M.; Latora, V., New J. Phys., 19 (2017) · doi:10.1088/1367-2630/aa6ea1
[26] Szolnoki, A.; Perc, M., Phys. Rev. X, 7 (2017)
[27] Hrdy, S. B., Mothers and Others: The Evolutionary Origins of Mutual Understanding (2011), Cambridge, MA: Harvard University Press, Cambridge, MA
[28] Nowak, M. A.; Highfield, R., SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed (2011), New York: Free Press, New York
[29] Axelrod, R., The Evolution of Cooperation (1984), New York: Basic Books, New York
[30] Albert, R.; Barabási, A. L., Rev. Mod. Phys., 74, 47-97 (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[31] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D., Phys. Rep., 424, 175-308 (2006) · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[32] Holme, P.; Saramäki, J., Phys. Rep., 519, 97-125 (2012) · doi:10.1016/j.physrep.2012.03.001
[33] Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J. P.; Moreno, Y.; Porter, M. A., J. Complex Netw., 2, 203-271 (2014) · doi:10.1093/comnet/cnu016
[34] Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M., Phys. Rep., 544, 1-122 (2014) · doi:10.1016/j.physrep.2014.07.001
[35] Roca, C. P.; Cuesta, J. A.; Sánchez, A., Phys. Life Rev., 6, 208-249 (2009) · doi:10.1016/j.plrev.2009.08.001
[36] Szolnoki, A.; Mobilia, M.; Jiang, L. L.; Szczesny, B.; Rucklidge, A. M.; Perc, M., J. R. Soc. Interface, 11 (2014) · doi:10.1098/rsif.2014.0735
[37] Perc, M.; Jordan, J. J.; Rand, D. G.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Phys. Rep., 687, 1-51 (2017) · Zbl 1366.80006 · doi:10.1016/j.physrep.2017.05.004
[38] Nowak, M. A.; May, R. M., Nature, 359, 826-829 (1992) · doi:10.1038/359826a0
[39] Nowak, M. A., Science, 314, 1560-1563 (2006) · doi:10.1126/science.1133755
[40] Rand, D. G.; Nowak, M. A.; Fowler, J. H.; Christakis, N. A., Proc. Natl Acad. Sci. USA, 111, 17093-17098 (2014) · doi:10.1073/pnas.1400406111
[41] Nash, J., Ann. Math., 54, 286-295 (1951) · Zbl 0045.08202 · doi:10.2307/1969529
[42] Szolnoki, A., Two-group population, random initial state (2017)
[43] Szabó, G.; Vukov, J.; Szolnoki, A., Phys. Rev. E, 72 (2005) · doi:10.1103/PhysRevE.72.047107
[44] Szolnoki, A., Patch-like starting state (2017)
[45] Dornic, I.; Chaté, H.; Chave, J.; Hinrichsen, H., Phys. Rev. Lett., 87 (2001) · doi:10.1103/PhysRevLett.87.045701
[46] Szolnoki, A., Three-group population, symmetric invasion rates (2017)
[47] Frean, M.; Abraham, E. D., Proc. R. Soc. B, 268, 1323-1327 (2001) · doi:10.1098/rspb.2001.1670
[48] Szolnoki, A., Three-group population, asymmetric invasion rates (2017)
[49] Szabó, G.; Szolnoki, A., Phys. Rev. E, 77 (2008) · doi:10.1103/PhysRevE.77.011906
[50] Szolnoki, A., Unequal invasions from prepared state (2017)
[51] Szolnoki, A., Dominance by the weakest in a highly asymmetric three-group system (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.