×

Optimal placement of base stations in border surveillance using limited capacity drones. (English) Zbl 1540.90143

Summary: Imagine an island modeled as a simple polygon \(\mathcal{P}\) with \(n\) vertices whose coastline we wish to monitor. We consider the problem of building the minimum number of refueling stations along the boundary of \(\mathcal{P}\) in such a way that a drone can follow a polygonal route enclosing the island without running out of fuel. A drone can fly a maximum distance \(d\) between consecutive stations and is restricted to move either along the boundary of \(\mathcal{P}\) or its exterior (i.e., over water). We present an algorithm that, given \(\mathcal{P}\), finds the locations for a set of refueling stations whose cardinality is at most the optimal plus one. The time complexity of this algorithm is \(O(n^2 + \frac{L}{d}n)\), where \(L\) is the length of \(\mathcal{P}\). We also present an algorithm that returns an additive \(\varepsilon\)-approximation for the problem of minimizing the fuel capacity required for the drones when we are allowed to place \(k\) base stations around the boundary of the island; this algorithm also finds the locations of these refueling stations. Finally, we propose a practical discretization heuristic which, under certain conditions, can be used to certify optimality of the results.

MSC:

90B80 Discrete location and assignment
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

References:

[1] Ahmed, N.; Kanhere, S. S.; Jha, S., The holes problem in wireless sensor networks: a survey, ACM SIGMOBILE Mob. Comput. Commun. Rev., 9, 2, 4-18 (2005)
[2] Alzahrani, B.; Oubbati, O. S.; Barnawi, A.; Atiquzzaman, M.; Alghazzawi, D., UAV assistance paradigm: state-of-the-art in applications and challenges, J. Netw. Comput. Appl., 166, Article 102706 pp. (2020)
[3] Bespamyatnikh, S., An o (nlogn) algorithm for the zoo-keeper’s problem, Comput. Geom., 24, 2, 63-74 (2003) · Zbl 1013.68269
[4] Bhattacharya, B.; Burmester, M.; Hu, Y.; Kranakis, E.; Shi, Q.; Wiese, A., Optimal movement of mobile sensors for barrier coverage of a planar region, Theor. Comput. Sci., 410, 52, 5515-5528 (2009) · Zbl 1192.68816
[5] Bose, P.; Morin, P.; Stojmenović, I.; Urrutia, J., Routing with guaranteed delivery in ad hoc wireless networks, Wirel. Netw., 7, 6, 609-616 (2001) · Zbl 0996.68012
[6] Chazelle, B., Triangulating a simple polygon in linear time, Discrete Comput. Geom., 6, 3, 485-524 (1991) · Zbl 0753.68090
[7] Chin, W.-P.; Ntafos, S., Optimum watchman routes, (Proceedings of the Second Annual Symposium on Computational Geometry (1986)), 24-33
[8] Cicek, C. T.; Gultekin, H.; Tavli, B., The location-allocation problem of drone base stations, Comput. Oper. Res., 111, 155-176 (2019) · Zbl 1458.90468
[9] Czyzowicz, J.; Egyed, P.; Everett, H.; Rappaport, D.; Shermer, T.; Souvaine, D.; Toussaint, G.; Urrutia, J., The aquarium Keeper’s problem, (Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms (1991)), 459-464 · Zbl 0800.68974
[10] Díaz-Báñez, J. M.; Mesa, J. A.; Schöbel, A., Continuous location of dimensional structures, Eur. J. Oper. Res., 152, 1, 22-44 (2004) · Zbl 1040.90021
[11] Ganeriwal, S.; Kansal, A.; Srivastava, M. B., Self aware actuation for fault repair in sensor networks, (IEEE International Conference on Robotics and Automation, 2004. IEEE International Conference on Robotics and Automation, 2004, Proceedings. ICRA’04. 2004, vol. 5 (2004), IEEE), 5244-5249
[12] Ghosh, S. K.; Maheshwari, A.; Pal, S. P.; Saluja, S.; Madhavan, C. V., Characterizing and recognizing weak visibility polygons, Comput. Geom., 3, 4, 213-233 (1993) · Zbl 0777.68077
[13] Guibas, L.; Hershberger, J.; Leven, D.; Sharir, M.; Tarjan, R. E., Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons, Algorithmica, 2, 1, 209-233 (1987) · Zbl 0642.68081
[14] Haghpanah, M., Border protection project. GitHub repository (2022)
[15] Hong, I.; Kuby, M.; Murray, A. T., A range-restricted recharging station coverage model for drone delivery service planning, Transp. Res., Part C, Emerg. Technol., 90, 198-212 (2018)
[16] Huang, H.; Savkin, A. V., A method of optimized deployment of charging stations for drone delivery, IEEE Trans. Transp. Electrif., 6, 2, 510-518 (2020)
[17] Karaca, Y.; Cicek, M.; Tatli, O.; Sahin, A.; Pasli, S.; Beser, M. F.; Turedi, S., The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations, Am. J. Emerg. Med., 36, 4, 583-588 (2018)
[18] Kumar, S.; Lai, T. H.; Arora, A., Barrier coverage with wireless sensors, Wirel. Netw., 6, 13, 817-834 (2007)
[19] Laporte, G.; Nickel, S.; Saldanha-da Gama, F., Introduction to location science, (Location Science (2019), Springer), 1-21
[20] Lee, D.-T.; Preparata, F. P., Euclidean shortest paths in the presence of rectilinear barriers, Networks, 14, 3, 393-410 (1984) · Zbl 0545.90098
[21] Li, M.; Zhen, L.; Wang, S.; Lv, W.; Qu, X., Unmanned aerial vehicle scheduling problem for traffic monitoring, Comput. Ind. Eng., 122, 15-23 (2018)
[22] Liu, Y.; Liu, Z.; Shi, J.; Wu, G.; Chen, C., Optimization of base location and patrol routes for unmanned aerial vehicles in border intelligence, surveillance, and reconnaissance, J. Adv. Transp., 2019 (2019)
[23] Long, T.; Ozger, M.; Cetinkaya, O.; Akan, O. B., Energy neutral Internet of drones, IEEE Commun. Mag., 56, 1, 22-28 (2018)
[24] Manyam, S. G.; Rasmussen, S.; Casbeer, D. W.; Kalyanam, K.; Manickam, S., Multi-UAV routing for persistent intelligence surveillance & reconnaissance missions, (2017 International Conference on Unmanned Aircraft Systems (ICUAS) (2017), IEEE), 573-580
[25] Melkman, A. A., On-line construction of the convex hull of a simple polyline, Inf. Process. Lett., 25, 1, 11-12 (1987) · Zbl 0653.68028
[26] Merwaday, A.; Tuncer, A.; Kumbhar, A.; Guvenc, I., Improved throughput coverage in natural disasters: unmanned aerial base stations for public-safety communications, IEEE Veh. Technol. Mag., 11, 4, 53-60 (2016)
[27] Nagy, G.; Location-routing, S. Salhi, Issues, models and methods, Eur. J. Oper. Res., 177, 2, 649-672 (2007) · Zbl 1109.90056
[28] Ntafos, S.; Gewali, L., External watchman routes, Vis. Comput., 10, 8, 474-483 (1994)
[29] O’rourke, J., Art Gallery Theorems and Algorithms, vol. 57 (1987), Oxford New York: Oxford New York NY, USA · Zbl 0653.52001
[30] Ribeiro, R. G.; Cota, L. P.; Euzébio, T. A.; Ramírez, J. A.; Guimarães, F. G., Unmanned-aerial-vehicle routing problem with mobile charging stations for assisting search and rescue missions in postdisaster scenarios, IEEE Trans. Syst. Man Cybern. Syst. (2021)
[31] Sarıçiçek, İ.; Akkuş, Y., Unmanned aerial vehicle hub-location and routing for monitoring geographic borders, Appl. Math. Model., 39, 14, 3939-3953 (2015) · Zbl 1443.90244
[32] Shermer, T. C., Recent results in art galleries (geometry), Proc. IEEE, 80, 9, 1384-1399 (1992)
[33] Tan, X., Fast computation of shortest watchman routes in simple polygons, Inf. Process. Lett., 77, 1, 27-33 (2001) · Zbl 1003.68174
[34] Tan, X.; Hirata, T., Finding shortest safari routes in simple polygons, Inf. Process. Lett., 87, 4, 179-186 (2003) · Zbl 1161.68700
[35] Tan, X.; Hirata, T.; Inagaki, Y., Corrigendum to an incremental algorithm for constructing shortest watchman routes, Int. J. Comput. Geom. Appl., 9, 03, 319-323 (1999) · Zbl 0959.68129
[36] Urrutia, J., Art gallery and illumination problems, (Handbook of Computational Geometry (2000), Elsevier), 973-1027 · Zbl 0941.68138
[37] Wang, G.; Cao, G.; La Porta, T. F., Movement-assisted sensor deployment, IEEE Trans. Mob. Comput., 5, 6, 640-652 (2006)
[38] Wei-Pang, C.; Ntafos, S., The zookeeper route problem, Inf. Sci., 63, 3, 245-259 (1992) · Zbl 0767.68090
[39] Yakıcı, E., Solving location and routing problem for UAVs, Comput. Ind. Eng., 102, 294-301 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.