×

Analysis of a global reactive transport model and results for the MoMaS benchmark. (English) Zbl 1540.86023

Summary: Reactive transport models are very useful for groundwater studies such as water quality, safety analysis of waste disposal, remediation, and so on. The MoMaS group defined a benchmark with several test cases. We present results obtained with a global method and show through these results the efficiency of our numerical model.

MSC:

86A60 Geological problems
76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage

References:

[1] Amir, L.; Kern, M., A global method for coupling transport with chemistry in heterogeneous porous media, Comput. Geosci., 14, 465-481 (2010) · Zbl 1425.76231
[2] Carrayrou, J., Looking for some reference solutions for the reactive transport benchmark of momas with specy, Comput. Geosci., 14, 393-403 (2010) · Zbl 1425.76235
[3] Carrayrou, J.; Hoffmann, J.; Knabner, P.; Kräutle, S.; de Dieuleveult, C.; Erhel, J.; der Lee, J. V.; Lagneau, V.; Mayer, K.; MacQuarrie, K., Comparison of numerical methods for simulating strongly non-linear and heterogeneous reactive transport problems. the momas benchmark case, Comput. Geosci., 14, 483-502 (2010) · Zbl 1426.76723
[4] Carrayrou, J.; Kern, M.; Knabner, P., Reactive transport benchmark of momas, Comput. Geosci., 14, 385-392 (2010) · Zbl 1425.76236
[5] Davis, T., Algorithm 832: Umfpack, an unsymmetric-pattern multifrontal method, ACM Trans. Math. Softw., 30, 196-199 (2004) · Zbl 1072.65037
[6] de Dieuleveult, C., Un modèle numérique global et performant pour le couplage géochimie-transport (2008), University of Rennes 1, (Ph.D. thesis)
[7] de Dieuleveult, C.; Erhel, J., A global approach to reactive transport: application to the momas benchmark, Comput. Geosci., 14, 451-464 (2010) · Zbl 1425.76294
[8] de Dieuleveult, C.; Erhel, J.; Kern, M., A global strategy for solving reactive transport equations, J. Comput. Phys., 228, 6395-6410 (2009), URL http://www.sciencedirect.com/science/article/B6WHY-4WGDR6C-1/2/ada7965dcd6096984365876b64411966 · Zbl 1173.76040
[10] Erhel, J.; Sabit, S.; de Dieuleveult, C., Solving partial differential algebraic equations and reactive transport models, (Computational Science, Engineering and Technology Series, vol. 31 (2013), Saxe-Coburg Publications), 151-169, URL http://hal.inria.fr/hal-00846544
[11] Harbaugh, A.; Banta, E.; Hill, M.; McDonald, M., MODFLOW-2000, the US Geological Survey modular ground-water model-User guide to modularization concepts and the Ground-Water Flow Process, Open-File Report 00-92 (2000), US Geological Survey
[12] Hindmarsh, A. C.; Brown, P. N.; Grant, K. E.; Lee, S. L.; Serban, R.; Shumaker, D. E.; Woodward, C. S., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Softw., 31, 363-396 (2005), Also available as LLNL technical report UCRL-JP-200037 · Zbl 1136.65329
[13] Hoffmann, J.; Kräutle, S.; Knabner, P., A parallel global-implicit 2-d solver for reactive transport problems in porous media based on a reduction scheme and its application to the momas benchmark problem, Comput. Geosci., 14, 421-433 (2010) · Zbl 1425.76240
[14] Lagneau, V.; Lee, J., Hytec results of the momas reactive transport benchmark, Comput. Geosci., 14, 435-449 (2010) · Zbl 1425.76247
[15] Mayer, K.; MacQuarrie, K., Solution of the momas reactive transport benchmark with min3p - model formulation and simulation results, Comput. Geosci., 14, 405-419 (2010) · Zbl 1426.76690
[16] Migot, T.; Erhel, J., Analyse mathématique de modèles géochimiques, Technical Report (2014), Inria
[18] Sabit, S., Les méthodes numériques de transport réactif (2014), University of Rennes, (Ph.D. thesis)
[19] Sabit, S.; Soualem, N., Suite Logicielle GRT3D (Global Reactive Transport 3D), Rapport de contrat Andra (2011), INRIA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.