×

Physically viable strange quark star models in modified teleparallel gravity. (English) Zbl 1540.83108

Summary: The aim of this paper is to develop isotropic and anisotropic quark star configurations in the context of \(f(T, \mathcal{T})\) gravity in a static spherically symmetric background. To explore the combined effects of torsion scalar \(T\) and the trace of the energy-momentum tensor (EMT) \(\mathcal{T}\) on relativistic astrophysics, we use diagonal as well as non-diagonal tetrad fields. By considering the conformal Killing vectors along with the MIT bag model, the interior solutions of the field equations corresponding to the linear \(f(T, \mathcal{T}) = \alpha T(r) + \beta\mathcal{T}(r) + \phi\) model (in which \(\alpha\), \(\beta\) are constants and \(\phi\) indicates the cosmological constant) are calculated. The feasibility of the obtained solutions is confirmed by implementing several physical tests. The model parameters are constrained subject to the existence and stability of the quark star models. We formulate the energy constraints, stability equations, mass function, compactness and redshift factor, and present a graphical analysis of all physical quantities. It is found that the derived solutions for both diagonal and non-diagonal tetrads exhibit well-behaved profiles in the framework of modified teleparallel gravity.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
85A15 Galactic and stellar structure
Full Text: DOI

References:

[1] Fuloria, P., A new generalised solution to generate anisotropic compact star models in the Karmarkar space-time manifold, Eur. Phys. J. A54 (2018) 1.
[2] Schwarzschild, K., On the gravitational field of a sphere of incompressible fluid according to Einstein’s theory, Sitz. Deut. Akad. Wiss. Berlin Kl. Math. Phys.24 (1916) 424.
[3] Tolman, R. C., Static solutions of Einstein’s field equations for spheres of fluid, Phys. Rev.55 (1939) 364. · JFM 65.1048.02
[4] Oppenheimer, J. R. and Volkof, G. M., On massive neutron cores, Phys. Rev.55 (1939) 374. · Zbl 0020.28501
[5] Lemaitre, G., L’Univers en expansion, Ann. Soc. Sci. Brux. A53 (1933) 51. · Zbl 0007.33104
[6] Jeans, J. H., The motions of stars in a Kapteyn universe, Mon. Not. R. Astron. Soc.82 (1922) 122.
[7] Rahaman, F., et al., Strange stars in Krori-Barua space-time, Eur. Phys. J. C72 (2012) 1.
[8] S. Tsujikawa, T. Tamaki and R. Tavakol, Chameleon scalar fields in relativistic gravitational backgrounds, J. Cosmol. Astropart. Phys.05 (2009) 020; S. Capozziello, M. De Laurentis, S. D. Odintsov and A. Stabile, Hydrostatic equilibrium and stellar structure in \(f(R)\) gravity, Phys. Rev. D83 (2011) 064004; S. Capozziello, M. De Laurentis, I. De Martino, M. Formisano and S. D. Odintsov, Jeans analysis of self-gravitating systems in \(f(R)\) gravity, Phys. Rev. D85 (2012) 044022.
[9] Hossein, S. M., et al., Anisotropic compact stars with variable cosmological constant, Int. J. Mod. Phys. D21 (2012) 1250088. · Zbl 1263.83045
[10] Herrera, L., The Israel theorem: What is nature trying to tell us?, Int. J. Mod. Phys. D17 (2008) 557. · Zbl 1151.83312
[11] M. Zubair, G. Abbas and I. Noureen, Possible formation of compact stars in \(f(R,T)\) gravity, Astrophys. Space Sci.361 (2016) 8; M. Zubair and G. Abbas, Some interior models of compact stars in \(f(R)\) gravity, Astrophys. Space Sci.361 (2016) 342; G. Abbas, A. Kanwal and M. Zubair, Anisotropic Compact Stars in \(f(T)\) Gravity, Astrophys. Space Sci.357 (2015) 109.
[12] Nashed, G. G. L. and Capozziello, S., Anisotropic compact stars in \(f(R)\) gravity, Eur. Phys. J. C81 (2021) 481.
[13] Astashenok, A. V., Capozziello, S., Odintsov, S. D. and Oikonomou, V., Causal limit of neutron star maximum mass in \(f(R)\) gravity in view of GW190814, Phys. Lett. B816 (2021) 136222.
[14] Astashenok, A. V., Capozziello, S. and Odintsov, S. D., Extreme neutron stars from Extended Theories of Gravity, J. Cosmol. Astropart. Phys.2015 (2015) 001.
[15] Astashenok, A. V., Capozziello, S. and Odintsov, S. D., Further stable neutron star models from \(f(R)\) gravity, J. Cosmol. Astropart. Phys.2013 (2013) 040.
[16] Karmarkar, K., Gravitational metrics of spherical symmetry and class one, Proc. Indian Acad. Sci. A27 (1948) 56.
[17] Komathiraj, K. and Maharaj, S. D., Classes of exact Einstein-Maxwell solutions, Gen. Relativ. Gravit.39 (2007) 2079. · Zbl 1136.83013
[18] Ivanov, B. V., A conformally flat realistic anisotropic model for a compact star, Eur. Phys. J. C78 (2018) 1.
[19] Bhar, P., Singh, K. N., Rahaman, F., Pant, N. and Banerjee, S., A charged anisotropic well-behaved Adler-Finch-Skea solution satisfying Karmarkar condition, Int. J. Mod. Phys. D26 (2017) 1750078. · Zbl 1371.85006
[20] S. K. Maurya, Y. K. Gupta, S. Ray and D. Deb, Generalised model for anisotropic compact stars, Eur. Phys. J. C76 (2016) 1; A new model for spherically symmetric charged compact stars of embedding class 1, ibid.77 (2017) 1.
[21] K. N. Singh, P. Bhar and N. Pant, A new solution of embedding class I representing anisotropic fluid sphere in general relativity, Int. J. Mod. Phys. D25 (2016) 1650099; K. N. Singh, N. Pant and A. M. Govender, Anisotropic compact stars in Karmarkar spacetime, Chin. Phys. C41 (2017) 015103. · Zbl 1359.85002
[22] Zubair, M., Sardar, I. H., Rahaman, F. and Abbas, G., Interior solutions of fluid sphere in \(f(R,T)\) gravity admitting conformal killing vectors, Astrophys. Space Sci.361 (2016) 238.
[23] Abbas, G. and Shahzad, M. R., Isotropic compact stars model in Rastall theory admitting conformal motion, Astrophys. Space Sci.363 (2018) 251.
[24] Bamba, K., Capozziello, S., Nojiri, S. I. and Odintsov, S. D., Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests, Astrophys. Space Sci.342 (2012) 155. · Zbl 1314.83037
[25] Hayashi, K. and Shirafuji, T., New general relativity, Phys. Rev. D19 (1979) 3524. · Zbl 1267.83090
[26] De Andrade, V. C. and Pereira, J. G., Gravitational Lorentz force and the description of the gravitational interaction, Phys. Rev. D56 (1997) 4689.
[27] Ferraro, R. and Fiorini, F., Modified teleparallel gravity: Inflation without an inflaton, Phys. Rev. D75 (2007) 084031.
[28] Bahamonde, S., Böhmer, C. G. and Wright, M., Modified teleparallel theories of gravity, Phys. Rev. D92 (2015) 104042.
[29] Bengochea, G. R. and Ferraro, R., Dark torsion as the cosmic speed-up, Phys. Rev. D79 (2009) 124019.
[30] A. Aviles, A. Bravetti, S. Capozziello and O. Luongo, Cosmographic reconstruction of \(f(T)\) cosmology, Phys. Rev. D87 (2013) 064025; R. Ferraro and F. Fiorini, Non-trivial frames for \(f(T)\) theories of gravity and beyond, Phys. Lett. B702 (2011) 75.
[31] Iorio, L. and Saridakis, E. N., Solar system constraints on \(f(T)\) gravity, Mon. Not. Roy. Astron. Soc.427 (2012) 1555.
[32] Karami, K. and Abdolmaleki, A., Generalized second law of thermodynamics in \(f(T)\) gravity, J. Cosmol. Astropart. Phys.1204 (2012) 007.
[33] Boehmer, C. G., Harko, T. and Lobo, F. S. N., Wormhole geometries in modified teleparallel gravity and the energy conditions, Phys. Rev. D85 (2012) 044033.
[34] Haghani, Z., Harko, T., Sepangi, H. R. and Shahidi, S., Weyl-Cartan-Weitzenböck gravity as a generalization of teleparallel gravity, J. Cosmol. Astropart. Phys.1210 (2012) 061.
[35] Li, B., Sotiriou, T. P. and Barrow, J. D., \(f(T)\) gravity and local Lorentz invariance, Phys. Rev. D83 (2011) 064035.
[36] Bamba, K., Capozziello, S., De Laurentis, M., Nojiri, S., and Sáez-Gómez, D., No further gravitational wave modes in \(F(T)\) gravity, Phys. Lett. B727 (2013) 194. · Zbl 1331.83067
[37] Jamil, M., Momeni, D. and Myrzakulov, R., Wormholes in a viable \(f(T)\) gravity, Eur. Phys. J. C73 (2013) 1.
[38] Saha, P. and Debnath, U., Study of anisotropic compact stars with quintessence field and modified chaplygin gas in \(f(T)\) gravity, Eur. Phys. J. C79 (2019) 1.
[39] Ilijić, S. and Sossich, M., Compact stars in \(f(T)\) extended theory of gravity, Phys. Rev. D98 (2018) 064047.
[40] Nashed, G. G. and Capozziello, S., Stable and self-consistent compact star models in teleparallel gravity, Eur. Phys. J. C80 (2020) 1.
[41] Das, A., Rahaman, F., Guha, B. K. and Ray, S., Relativistic compact stars in \(f(T)\) gravity admitting conformal motion, Astrophys. Space Sci.358 (2015) 36.
[42] Harko, T., Lobo, F. S. N., Otalora, G. and Saridakis, E. N., Nonminimal torsion-matter coupling extension of \(f(T)\) gravity, Phys. Rev. D89 (2014) 124036.
[43] Bertolami, O., Boehmer, C. G., Harko, T. and Lobo, F. S. N., Extra force in \(f(R)\) modified theories of gravity, Phys. Rev. D75 (2007) 104016.
[44] Harko, T., Lobo, F. S. N., Nojiri, S. and Odintsov, S. D., \(f(R,T)\) gravity, Phys. Rev. D84 (2011) 024020.
[45] Haghani, Z., Harko, T., Lobo, F. S. N., Sepangi, H. R. and Shahidi, S., Further matters in space-time geometry: \(f(R,T, R_{\mu \nu} T^{\mu \nu})\) gravity, Phys. Rev. D88 (2013) 044023.
[46] Alvarenga, F. G., De La Cruz-Dombriz, A., Houndjo, M. J. S., Rodrigues, M. E. and Sáez-Gómez, D., Dynamics of scalar perturbations in \(f(R,T)\) gravity, Phys. Rev. D87 (2013) 103526.
[47] Harko, T., Lobo, F. S. N., Otalora, G. and Saridakis, E. N., \(f(T,\mathcal{T})\) gravity and cosmology, J. Cosmol. Astropart. Phys.2014 (2014) 021.
[48] Momeni, D. and Myrzakulov, R., Cosmological reconstruction of \(f(T,\mathcal{T})\) gravity, Int. J. Geom. Meth. Mod. Phys.11 (2014) 1450077. · Zbl 1305.83052
[49] Sáez-Gómez, D., Carvalho, C. S., Lobo, F. S. N. and Tereno, I., Constraining \(f(T,\mathcal{T})\) gravity models using type Ia supernovae, Phys. Rev. D94 (2016) 024034.
[50] M. Pace and J. L. Said, Quark stars in \(f(T,\mathcal{T})\)-gravity, Eur. Phys. J. C77 (2017) 1; A perturbative approach to neutron stars in \(f(T,\mathcal{T})\)-gravity, ibid.77 (2017) 1.
[51] Farrugia, G., Said, J. L. and Ruggiero, M. L., Solar System tests in \(f(T)\) gravity, Phys. Rev. D93 (2016) 104034.
[52] Saleem, R., Aslam, M. I. and Zubair, M., Charged anisotropic compact stellar solutions in torsion-trace gravity via modified chaplygin gas model, Eur. Phys. J. Plus.136 (2021) 1.
[53] Ferraro, R. and Fiorini, F., Born-Infeld gravity in Weitzenböck spacetime, Phys. Rev. D78 (2008) 124019.
[54] R. Weitzenböck, Invarianten-Theories (Nordhoff, Groningen, 1923). · JFM 49.0064.01
[55] Pace, M. and Said, J. L., Eur. Phys. J. C77 (2017) 62.
[56] Saleem, R., Zubair, M., Kramat, F., Aslam, M. I. and Sadiq, S., Anisotropic stellar solutions in torsion-trace gravity under Karmarkar condition, Int. J. Geom. Meth. Mod. Phys.19 (2022) 2250067. · Zbl 1535.83107
[57] Singh, K. N., Banerjee, A., Rahaman, F. and Jasim, M. K., Conformally symmetric traversable wormholes in modified teleparallel gravity, Phys. Rev. D101 (2020) 084012.
[58] Shee, D., Rahaman, F., Guha, B. K. and Ray, S., Anisotropic stars with non-static conformal symmetry, Astrophys. Space Sci.361 (2016) 1.
[59] Rahaman, F., et al., Static charged fluid in \((2+1)\)-dimensions admitting conformal Killing vectors, Int. J. Mod. Phys. D23 (2014) 1450042. · Zbl 1291.83072
[60] Rahaman, F., Ray, S., Khadekar, G. S., Kuhfittig, P. K. F. and Karar, I., Noncommutative geometry inspired wormholes with conformal motion, Int. J. Theor. Phys.54 (2015) 699. · Zbl 1315.83035
[61] Herrera, L., Cracking of self-gravitating compact objects, Phys. Lett. A165 (1992) 206.
[62] Herrera, L., Jimenez, J., Leal, L., Ponce de Leon, J., Esculpi, M. and Galina, V., Anisotropic fluids and conformal motions in general relativity, J. Math. Phys.25 (1984) 3274. · Zbl 0548.76113
[63] L. Herrera and J. Ponce de Leon, Anisotropic spheres admitting a one-parameter group of conformal motions, J. Math. Phys.26 (1985) 2018; Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions, ibid.26 (1985) 2302. · Zbl 0584.76127
[64] Bohmer, C. G., Mussa, A. and Tamanini, N., Existence of relativistic stars in \(f(T)\) gravity, Class. Quantum Grav.28 (2011) 245020. · Zbl 1232.83064
[65] Tamanini, N. and Boehmer, C. G., Good and bad tetrads in \(f(T)\) gravity, Phys. Rev. D86 (2012) 044009.
[66] Faraoni, V., Inflation and quintessence with nonminimal coupling, Phys. Rev. D62 (2000) 023504.
[67] Paliathanasis, A., et al., New Schwarzschild-like solutions in \(f(T)\) gravity through Noether symmetries, Phys. Rev. D89 (2014) 104042.
[68] A. J. R. L. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn and V. Weisskopf, New extended model of hadrons, it Phys. Rev. D 9 (1974) 3471; K. Johnson and C. B. Thorn, Stringlike solutions of the bag model, Phys. Rev. D13 (1976) 1934.
[69] Rawls, M. L., Orosz, J. A., McClintock, J. E., Torres, M. A., Bailyn, C. D. and Buxton, M. M., Refined neutron star mass determinations for six eclipsing x-ray pulsar binaries, Astrophys. J.730 (2011) 25.
[70] Abubekerov, M. K., Antokhina, E. A., Cherepashchuk, A. M. and Shimanskii, V. V., The mass of the compact object in the X-ray binary her X-\(1\)/HZ her, Astron. Rep.52 (2008) 379.
[71] Itoh, N., Hydrostatic equilibrium of hypothetical quark stars, Prog. Theor. Phys.44 (1970) 291.
[72] Witten, E., Cosmic separation of phases, Phys. Rev. D30 (1984) 272.
[73] Khoury, J. and Weltman, A., Chameleon cosmology, Phys. Rev. D69 (2004) 044026.
[74] Farhi, E. and Jaffe, R. L., Strange matter, Phys. Rev. D30 (1984) 2379.
[75] Spergel, D. N., et al., First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Suppl.148 (2003) 175.
[76] Stergioulas, N., Rotating stars in relativity, Liv. Rev. Rel.6 (2003) 1. · Zbl 1068.83508
[77] Mak, M. K. and Harko, T., Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys. D13 (2004) 149. · Zbl 1079.83513
[78] Herrera, L., Phys. Lett. A165 (1992) 206-210.
[79] Buchdahl, H. A., General relativistic fluid spheres, Phys. Rev. D116 (1959) 1027. · Zbl 0092.20802
[80] Ditta, A., Hussain, I., Mustafa, G., Errehymy, A. and Daoud, M., A study of traversable wormhole solutions in extended teleparallel theory of gravity with matter coupling, Eur. Phys. J. C81 (2021) 880.
[81] Abreu, H., Hernández, H. and Núnez, L. A., Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects, Class. Quantum Grav.24 (2007) 4631. · Zbl 1128.83023
[82] Astashenok, A. V. and Odintsov, S. D., From neutron stars to quark stars in mimetic gravity, Phys. Rev. D94 (2016) 063008.
[83] Astashenok, A. V., Capozziello, S. and Odintsov, S. D., Nonperturbative models of quark stars in \(f(R)\) gravity, Phys. Lett. B742 (2015) 160. · Zbl 1345.83026
[84] Astashenok, A. V., Capozziello, S., Odintsov, S. D. and Oikonomou, V. K., Novel stellar astrophysics from extended gravity, Europhys. Lett134 (2021) 59001.
[85] Astashenok, A. V., Capozziello, S., Odintsov, S. D. and Oikonomou, V. K., Extended gravity description for the GW \(190814\) supermassive neutron star, Phys. Lett. B811 (2020) 135910. · Zbl 1475.85007
[86] Astashenok, A. V., Odintsov, S. D. and Oikonomou, V. K., Compact stars with dark energy in general relativity and modified gravity, Phys. Dark Uni.42 (2023) 101295.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.