×

Canonical quantization of the electromagnetic field in arbitrary \(\xi \)-gauge. (English) Zbl 1540.81172

Summary: We carry out the canonical quantization of the electromagnetic field in arbitrary \(\xi \)-gauge and compute its propagator. In this way we fill a gap in the literature and clarify some existing confusion about Feynman \(\text{i}\epsilon\) prescription for the propagator of the electromagnetic field. We also discuss the BRST quantization and investigate the apparent singularities present in the theory when the gauge parameter \(\xi\) takes the value \(-1\). We find that this is a mere artifact due to the choice of basic modes and show that in the appropriate basis the commutation relations and the BRST transformation are, in fact, independent of the gauge parameter. The latter only appears as the coefficient of a BRST exact term in the Hamiltonian, which constitutes an extremely simple proof of the independence of any physical process on the gauge parameter \(\xi \).

MSC:

81V10 Electromagnetic interaction; quantum electrodynamics
81T10 Model quantum field theories
81T20 Quantum field theory on curved space or space-time backgrounds
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
58J47 Propagation of singularities; initial value problems on manifolds

References:

[1] Gawȩdzki, K., On the geometrization of the canonical formalism in the classical field theory, Rep. Math. Phys., 3, 307-326 (1972) · doi:10.1016/0034-4877(72)90014-6
[2] Gawȩdzki, K.; Kupiainen, A., Massless lattice \(\phi^4_4\) theory: rigorous control of a renormalizable asymptotically free model, Commun. Math. Phys., 99, 197-252 (1985) · doi:10.1007/BF01212281
[3] Felder, G.; Gawȩdzki, K.; Kupiainen, A., Spectra of Wess-Zumino-Witten models with arbitrary simple groups, Commun. Math. Phys., 117, 127-158 (1988) · Zbl 0642.22005 · doi:10.1007/BF01228414
[4] Falceto, F.; Gawȩdzki, K., Chern-Simons states at genus one, Commun. Math. Phys., 159, 549-579 (1994) · Zbl 0797.57011 · doi:10.1007/BF02099984
[5] Bernard, D.; Gawȩdzki, K.; Kupiainen, A., Slow modes in passive advection, J. Stat. Phys, 90, 519-569 (1998) · Zbl 0932.76030 · doi:10.1023/A:1023212600779
[6] Gawȩdzki, K.; Suszek, RR; Waldorf, K., Bundle Gerbes for orientifold sigma models, Adv. Theor. Math. Phys., 15, 621-687 (2011) · Zbl 1280.81089 · doi:10.4310/ATMP.2011.v15.n3.a1
[7] Gupta, SN, Theory of longitudinal photons in quantum electrodynamics, Proc. Phys. Soc., 63, 681-691 (1950) · Zbl 0040.42403 · doi:10.1088/0370-1298/63/7/301
[8] Bleuler, K., Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen, Helv. Phys. Acta (in German), 23, 567-586 (1950) · Zbl 0040.42404
[9] Strocchi, F.; Wightman, AS, Proof of the charge superselection rule in local relativistic quantum field theory, J. Math. Phys., 15, 2198-2224 (1974) · doi:10.1063/1.1666601
[10] Abers, ES; Lee, BW, Gauge theories, Phys. Rep., 9, 87 (1973)
[11] Marciano, W.; Page, H., Quantum chromodynamics, Phys. Rep., 36, 169 (1978) · doi:10.1016/0370-1573(78)90208-9
[12] Kaku, M., Quantum Field Theory: A Modern Introduction, 305 (1993), New York: Oxford University Press, New York
[13] Peskin, M.; Schroeder, D., An Introduction to Quantum Field Theory, 297 (1995), Reading, MA: Addison-Wesley, Reading, MA
[14] Weinberg, S., The Quantum Theory of Fields, 23 (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0885.00020 · doi:10.1017/CBO9781139644174
[15] Srednicki, M., Quantum Field Theory, 435 (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1113.81002 · doi:10.1017/CBO9780511813917
[16] Banks, T., Modern Quantum Field Theory, 251 (2008), New York: Cambridge University Press, New York · Zbl 1156.81001 · doi:10.1017/CBO9780511811500
[17] Zeidler, E., Quantum Field Theory I: Basics in Mathematics and Physics, 887 (2009), Berlin: Springer, Berlin · Zbl 1155.81005
[18] Schwartz, MD, Quantum Field Theory and the Standard Model, 130 (2014), Cambridge: Cambridge University Press, Cambridge
[19] Itzykson, C.; Zuber, JB, Quantum Field Theory, 134 (1980), New York: McGraw-Hill, New York
[20] Collins, J., Renormalization, 34 (1984), Cambridge: Cambridge University Press, Cambridge · Zbl 1094.53505 · doi:10.1017/CBO9780511622656
[21] Sterman, G., An Introduction to Quantum Field Theory, 190 (1993), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9780511622618
[22] Candelas, P.; Raine, DJ, Feynman propagator in curved space-time, Phys. Rev. D, 15, 1494-1500 (1977) · doi:10.1103/PhysRevD.15.1494
[23] Ivashchuk, V. D.: Regularization by \(\epsilon \)-metric. I. Izv. Akad. Nauk Mold. SSR, Ser. fiz.-tekhn. i mat. nauk. 3, 8-17 (1987) [in Russian]. English translation in arXiv:1902.03152
[24] Ivashchuk, V. D.: Regularization by \(\epsilon \)-metric: II. The limit \(\epsilon = 0^+\). Izv. Akad. Nauk Mold. SSR, Ser. fiz.-tekhn. i mat. nauk. 1, 10-20 (1988) [in Russian]. English translation in arXiv:2002.10527
[25] Ivashchuk, VD, Wick rotation, regularization of propagators by a complex metric and multidimensional cosmology, Grav. Cosmol., 3, 8-16 (1997) · Zbl 0958.83047
[26] Visser, M.: How to Wick rotate generic curved spacetime, GRF essay (1991) arXiv:1702.05572
[27] Visser, M., Feynman’s i-epsilon prescription, almost real spacetimes, and acceptable complex spacetimes, J. High Energ. Phys., 2022, 129 (2022) · Zbl 1522.83081 · doi:10.1007/JHEP08(2022)129
[28] Louko, J.; Sorkin, RD, Complex actions in two-dimensional topology change, Class. Quant. Grav., 14, 179-204 (1997) · Zbl 0868.53069 · doi:10.1088/0264-9381/14/1/018
[29] Kontsevich, M.; Segal, G., Wick rotation and the positivity of energy in Quantum Field Theory, Q. J. Math. Oxford Ser., 72, 673-699 (2021) · Zbl 1471.81075 · doi:10.1093/qmath/haab027
[30] Witten, E.: A Note on Complex Spacetime Metrics, arXiv:2111.06514
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.