×

Holographic description of elastic photon-proton and photon-photon scattering. (English) Zbl 1540.81159

Summary: We investigate the elastic photon-proton and photon-photon scattering in a holographic QCD model, focusing on the Regge regime. Considering contributions of the Pomeron and Reggeon exchange, the total and differential cross sections are calculated. While our model involves several parameters, by virtue of the universality of the Pomeron and Reggeon, for most of them the values determined in the preceding study on the proton-proton and proton-antiproton scattering can be employed. Once the two adjustable parameters, the Pomeron-photon and Reggeon-photon coupling constant, are determined with the experimental data of the total cross sections, predicting the both cross sections in a wide kinematic region, from the GeV to TeV scale, becomes possible. We show that the total cross section data can be well described within the model, and our predictions for the photon-proton differential cross section are consistent with the data.

MSC:

81U05 \(2\)-body potential quantum scattering theory
81V05 Strong interaction, including quantum chromodynamics
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
83F05 Relativistic cosmology
81V25 Other elementary particle theory in quantum theory
81V35 Nuclear physics
81-08 Computational methods for problems pertaining to quantum theory

References:

[1] Brodsky, S. J.; Farrar, G. R., Phys. Rev. Lett., 1153 (1973)
[2] Matveev, V. A.; Muradian, R. M.; Tavkhelidze, A. N., Lett. Nuovo Cimento, 719 (1973)
[3] Lepage, G. P.; Brodsky, S. J., Phys. Rev. D, 2157 (1980)
[4] Veneziano, G., Nuovo Cimento A, 190 (1968)
[5] Collins, P., Phys. Rep., 103 (1971)
[6] Collins, P. D.B., An Introduction to Regge Theory and High-Energy Physics. Cambridge Monographs on Mathematical Physics (2009), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK
[7] Kruczenski, M.; Mateos, D.; Myers, R. C.; Winters, D. J., J. High Energy Phys. (2003)
[8] Son, D. T.; Stephanov, M. A., Phys. Rev. D (2004)
[9] Kruczenski, M.; Mateos, D.; Myers, R. C.; Winters, D. J., J. High Energy Phys. (2004)
[10] Sakai, T.; Sugimoto, S., Prog. Theor. Phys., 843 (2005)
[11] Erlich, J.; Katz, E.; Son, D. T.; Stephanov, M. A., Phys. Rev. Lett. (2005)
[12] Sakai, T.; Sugimoto, S., Prog. Theor. Phys., 1083 (2005)
[13] Da Rold, L.; Pomarol, A., Nucl. Phys. B, 79 (2005)
[14] Brodsky, S. J.; de Teramond, G. F., Phys. Rev. Lett. (2006)
[15] Maldacena, J. M., Adv. Theor. Math. Phys., 231 (1998) · Zbl 0914.53047
[16] Gubser, S. S.; Klebanov, I. R.; Polyakov, A. M., Phys. Lett. B, 105 (1998)
[17] Witten, E., Adv. Theor. Math. Phys., 253 (1998) · Zbl 0914.53048
[18] Polchinski, J.; Strassler, M. J., Phys. Rev. Lett. (2002)
[19] Polchinski, J.; Strassler, M. J., J. High Energy Phys. (2003)
[20] Brower, R. C.; Polchinski, J.; Strassler, M. J.; Tan, C.-I., J. High Energy Phys. (2007)
[21] Hatta, Y.; Iancu, E.; Mueller, A. H., J. High Energy Phys. (2008)
[22] Pire, B.; Roiesnel, C.; Szymanowski, L.; Wallon, S., Phys. Lett. B, 84 (2008)
[23] Domokos, S. K.; Harvey, J. A.; Mann, N., Phys. Rev. D (2009)
[24] Domokos, S. K.; Harvey, J. A.; Mann, N., Phys. Rev. D (2010)
[25] Marquet, C.; Roiesnel, C.; Wallon, S., J. High Energy Phys. (2010)
[26] Watanabe, A.; Suzuki, K., Phys. Rev. D (2012)
[27] Watanabe, A.; Suzuki, K., Phys. Rev. D (2014)
[28] Watanabe, A.; Li, H.-n., Phys. Lett. B, 321 (2015)
[29] Anderson, N.; Domokos, S.; Mann, N., Phys. Rev. D (2017)
[30] Watanabe, A.; Huang, M., Phys. Lett. B, 256 (2019)
[31] Xie, W.; Watanabe, A.; Huang, M., J. High Energy Phys. (2019)
[32] Burikham, P.; Samart, D., Eur. Phys. J. C, 452 (2019)
[33] Watanabe, A.; Sawada, T.; Huang, M., Phys. Lett. B (2020)
[34] Liu, Z.; Xie, W.; Sun, F.; Li, S.; Watanabe, A., Phys. Rev. D (2022)
[35] Liu, Z.; Xie, W.; Watanabe, A., Phys. Rev. D (2023)
[36] Watanabe, A.; Sirat, S. A.; Liu, Z. (2023)
[37] Liu, Z.; Watanabe, A. (2023)
[38] Sakurai, J. J., Ann. Phys., 1 (1960)
[39] Pagels, H., Phys. Rev., 1250 (1966)
[40] Abidin, Z.; Carlson, C. E., Phys. Rev. D (2008)
[41] Abidin, Z.; Carlson, C. E., Phys. Rev. D (2009)
[42] Yamada, M., Phys. Rev. D, 2144 (1984)
[43] Workman, R. L., PTEP (2022)
[44] James, F.; Roos, M., Comput. Phys. Commun., 343 (1975)
[45] Amos, N. A., Nucl. Phys. B, 689 (1985)
[46] Bernard, D., Phys. Lett. B, 583 (1987)
[47] Criegee, L.; Franke, G.; Giese, A.; Khal, T.; Poelz, G.; Timm, U.; Werner, H.; Zimmermann, W., Nucl. Phys. B, 31 (1977)
[48] Anderson, R. L.; Gustavson, D.; Johnson, J. R.; Overman, I.; Ritson, D.; Wiik, B. H.; Talman, R.; Walker, J. K.; Worcester, D., Phys. Rev. Lett., 1218 (1970)
[49] Breakstone, A. M.; Cheng, D. C.; Dorfan, D. E.; Grillo, A. A.; Heusch, C. A.; Palladino, V.; Schalk, T.; Seiden, A.; Smith, D. B., Phys. Rev. Lett., 1778 (1981)
[50] Buschhorn, G., Phys. Lett. B, 207 (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.