×

Mixed convection hybrid nanofluid flow over a stationary permeable vertical cone with thermal radiation and convective boundary condition. (English) Zbl 1540.76189

Summary: Many real-world devices, such as heat exchangers, geothermal reservoirs, and cooling systems, utilize the concept of boundary layer flow across a cone geometry. The current study presents and analyses the mathematical formulation for the mixed convection flow of a hybrid nanofluid over a permeable stationary cone. The heat transfer analysis considers the effects of thermal radiation and convective boundary condition. Numerical and statistical analyses of this flow problem yield new, physically significant results. The numerical analysis is carried out using the bvp4c solver in Matlab. Similarity transformations are performed to obtain a system of nonlinear ordinary differential equations from the governing partial differential equations and boundary conditions. In both assisting and opposing flows, spherical- and platelet-shaped nanoparticles are observed to produce the lowest and highest local skin friction coefficient, respectively. The spherical- and blade-shaped nanoparticles also offer the highest and lowest local Nusselt number, respectively, with a difference of 6.4% (assisting) and 6.03% (opposing). Meanwhile, the increase in the mixed convection parameter raised the velocity profile but diminished the temperature profile of the hybrid nanofluid. Then, the relationship of the Biot number \(({Bi})\), suction \((S)\), and thermal radiation \((R)\) parameters with the local Nusselt number is investigated through the response surface methodology (RSM). The local Nusselt number for the current flow problem is estimated to be maximized at 0.814323 (assisting) and 0.814629 (opposing) when these parameters are at the highest range of \(S = 2.0\), \(R = 1.0\), and \(Bi = 0.5\). Several researchers had presented experimental studies conducted at different temperatures (15, 25, \(35 ° C)\), mass flow rates (ranging from 0.00076 to 0.041 kg/s), and nanoparticle concentrations (0.387, 0.992, 3.12, 4.71 mass%).
© 2024 Wiley-VCH GmbH.

MSC:

76R05 Forced convection
76R10 Free convection
76T20 Suspensions
76M20 Finite difference methods applied to problems in fluid mechanics
80A19 Diffusive and convective heat and mass transfer, heat flow
80A21 Radiative heat transfer
Full Text: DOI

References:

[1] Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab.(ANL), Argonne, IL (United States) (1995)
[2] Huminic, G., Huminic, A.: Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review. J. Mol. Liq.302, 112533 (2020)
[3] Suresh, S., Venkitaraj, K.P., Selvakumar, P., Chandrasekar, M.: Effect of Al 2O 3‐Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid. Sci.38, 54-60 (2012)
[4] HR, A., Hormozi, F., ZareNezhad, B.: Experimental investigation on the thermal performance of a coiled heat exchanger using a new hybrid nanofluid. Exp. Therm. Fluid. Sci.76, 324-329 (2016)
[5] Bhattad, A., Sarkar, J., Ghosh, P.: Experimentation on effect of particle ratio on hydrothermal performance of plate heat exchanger using hybrid nanofluid. Appl. Therm. Eng.162, 114309 (2019)
[6] Vallejo, J.P., Prado, J.I., Lugo, L.: Hybrid or mono nanofluids for convective heat transfer applications. A critical review of experimental research. Appl. Therm. Eng.203, 117926 (2022)
[7] Vărdaru, A., Huminic, G., Huminic, A., Fleacă, C., Dumitrache, F., Morjan, I.: Synthesis, characterization and thermal conductivity of water based graphene oxide-silicon hybrid nanofluids: An experimental approach. Alex Eng J.61(12), 12111-12122 (2022)
[8] Bhattad, A., Atgur, V., Rao, B.N., Banapurmath, N.R., Yunus Khan, T.M., Vadlamudi, C., et al. Review on mono and hybrid nanofluids: Preparation, properties, investigation, and applications in IC engines and heat transfer. Energies (Basel).16(7), 3189 (2023)
[9] Mahdy, A., El‐Zahar, E.R., Rashad, A.M., Saad, W., Al‐Juaydi, H.S.: The magneto‐natural convection flow of a micropolar hybrid nanofluid over a vertical plate saturated in a porous medium. Fluids.6(6), 202 (2021)
[10] El‐Zahar, E.R., Mahdy, A.E.N., Rashad, A.M., Saad, W., Seddek, L.F.: Unsteady mhd mixed convection flow of non‐newtonian casson hybrid nanofluid in the stagnation zone of sphere spinning impulsively. Fluids.6(6), 197 (2021)
[11] El‐Zahar, E.R., Rashad, A.M., Al‐Juaydi, H.S.: Studying massive suction impact on magneto‐flow of a hybridized casson nanofluid on a porous continuous moving or fixed surface. Symmetry (Basel).14(3), 627 (2022)
[12] EL‐Zahar, E.R., Rashad, A.M., Saad, W., Seddek, L.F.: Magneto‐hybrid nanofluids flow via mixed convection past a Radiative Circular Cylinder. Sci Rep10(1), 10494 (2020)
[13] Nabwey, H.A., Khan, W.A., Rashad, A.M., Elmeky, H., Abdelnaem, S., Hawsah, M.A.: Solar energy improvement in solar HVAC using Sutterby magneto‐ternary hybrid nanofluid flow with Smoluchowski temperature conditions: A solar thermal application. Z Angew Math Mech.e202300063 (2023) · Zbl 07783425
[14] Merkin, J.H., Pop, I., Lok, Y.Y., Grosan, T.: Similarity solutions for the boundary layer flow and heat transfer of viscous fluids, nanofluids, porous media, and micropolar fluids. Similarity solutions for the boundary layer flow and heat transfer of viscous fluids, nanofluids, porous media, and micropolar fluids. Academic Press, United States (2021)
[15] Rosseland, S.: Astrophysik und atom‐theoretische Grundlagen. Springer, Berlin (1931) · JFM 57.1616.05
[16] Bachok, N., Ishak, A., Pop, I.: Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect. PLoS One8(4), e60766 (2013)
[17] Rostami, M.N., Dinarvand, S.: Pop I. Dual solutions for mixed convective stagnation‐point flow of an aqueous silica-alumina hybrid nanofluid. J Phys Condens Matter56(5), 2465-2478 (2018)
[18] Xia, W.F., Ahmad, S., Khan, M.N., Ahmad, H., Rehman, A., Baili, J., et al. Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions. Case Stud. Therm. Eng.32, 101893 (2022)
[19] Jamaludin, A., Naganthran, K., Nazar, R., Pop, I.: MHD mixed convection stagnation‐point flow of Cu‐Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. Eur. J. Mech. B. Fluids.84, 71-80 (2020) · Zbl 1477.76110
[20] Khashi’ie, N.S., Arifin, N.M., Merkin, J.H., Yahaya, R.I., Pop, I.: Mixed convective stagnation point flow of a hybrid nanofluid toward a vertical cylinder. Int. J. Numer. Methods Heat Fluid Flow.31(12), 3689-3710 (2021)
[21] Asghar, A., Chandio, A.F., Shah, Z., Vrinceanu, N., Deebani, W., Shutaywi, M., et al. Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition. Heliyon9(2), e13189 (2023)
[22] Sarfraz, M., Yasir, M., Khan, M.: Multiple solutions for nonlinear radiative mixed convective hybrid nanofluid flow over an exponentially shrinking surface. Sci. Rep.13(1), 3443 (2023)
[23] Yahaya, R.I., Arifin, N.M., Pop, I., Ali, F.M., Isa, S.: Dual solutions of unsteady mixed convection hybrid nanofluid flow past a vertical riga plate with radiation effect. Mathematics.11(1), 215 (2023)
[24] Kumar, R., Sharma, T., Vajravelu, K.: Melting heat transport in a mixed convective squeeze flow of a hybrid nanofluid with interfacial nanolayer effects. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 103(3), e202200092 (2023) · Zbl 1535.76092
[25] Thakur, A., Sood, S.: Comparative investigation of the mixed convective stagnated flow of TiO2−CuO/water−EG hybrid nanofluids past an exponentially stretching sheet. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik.102(12), (2022) · Zbl 1535.65168
[26] Himasekhar, K., Sarma, P.K., Janardhan, K.: Laminar mixed convection from a vertical rotating cone. Int. Commun. Heat Mass Transf. J.16(1), 99-106 (1989)
[27] Kumari, M., Pop, I., Nath, G.: Mixed convection along a vertical cone. Int. Commun. Heat Mass Transf. J.16(2), 247-255 (1989)
[28] Anilkumar, D., Roy, S.: Unsteady mixed convection flow on a rotating cone in a rotating fluid. Appl. Math Comput.155(2), 545-561 (2004) · Zbl 1126.76369
[29] Nadeem, S., Saleem, S.: Analytical treatment of unsteady mixed convection MHD flow on a rotating cone in a rotating frame. J. Taiwan Inst. Chem. Eng.44(4), 596-604 (2013)
[30] Aldoss, T.K.: MHD mixed convection from a vertical cylinder embedded in a porous medium. Int. Commun. Heat Mass Transf. 23(4), 1141-1148 (1996)
[31] Meena, O.P.: Mixed convection flow over a vertical cone with double dispersion and chemical reaction effects. Heat Transf. 50(5), 4516-4534 (2021)
[32] Meena, O.P., Janapatla, P., Meena, M.K.: Influence of thermal dispersion and chemical reaction on mixed convection flow over a vertical cone saturated porous media with injection/suction. Math. Models Comput. Simul.14(1), 172-185 (2022)
[33] Meena, O.P., Janapatla, P., Srinivasacharya, D.: Magnetic and joule heating effects on mixed convection flow across a vertical cone. Comput. Therm. Scia.15(3), 61-77 (2023)
[34] Meena, O.P., Janapatla, P., Srinivasacharya, D.: Influence of Soret and Dufour on mixed convection flow across a vertical cone. J. Heat Transfer.50(8), 8280-8300 (2021)
[35] Meena, O.P., Janapatla, P., Srinivasacharya, D.: Mixed Convection flow across a vertical cone with heat source/sink and chemical reaction effects. Math. Models Comput. Simul.14(3), 532-546 (2022)
[36] Meena, O.P., Janapatla, P., Srinivasacharya, D.: Mixed convection fluid flow over a vertical cone saturated porous media with double dispersion and injection/suction effects. Int. J. Appl. Comput. Math.7(3), 59 (2021) · Zbl 1491.76066
[37] Meena, O.P., Janapatla, P., Kumar, K.G.: Mixed convection flow over a vertical cone saturated porous medium with double dispersion effect. Appl. Math. Comput.430, 127072 (2022) · Zbl 1510.76152
[38] Meena, O.P., Janapatla, P., Magagula, V.M.: Influence of radiation on mixed convection flow across a vertical cone with soret effect. Math. Models Comput. Simul.14(5), 847-862 (2022)
[39] Meena, O.P., Janapatla, P., Chamkha, A.J.: Influence of soret and dufour effects on mixed convection flow over a vertical cone with injection/suction effects. J. Porous Media24(4), 73-88 (2021)
[40] Chamkha, A.J., Abbasbandy, S., Rashad, A.M., Vajravelu, K.: Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nanofluid. Meccanica.48(2), 275-285 (2013) · Zbl 1293.76123
[41] Nadeem, S., Saleem, S.: Mixed convection flow of Eyring‐Powell fluid along a rotating cone. Results Phys.4, 54-62 (2014)
[42] Rosali, H., Ishak, A., Nazar, R., Pop, I.: Mixed convection boundary layer flow past a vertical cone embedded in a porous medium subjected to a convective boundary condition. Propuls. Power Res. 5(2), 118-122 (2016)
[43] Siddiqa, S., Begum, N., Ouazzi, A., Hossain, M.A., Gorla, R.S.R.: Heat transfer analysis of Casson dusty fluid flow along a vertical wavy cone with radiating surface. Int. J. Heat Mass Transf. 127, 589-596 (2018)
[44] Hajatzadeh Pordanjani, A., Aghakhani, S., Afrand, M., Mahmoudi, B., Mahian, O., Wongwises, S.: An updated review on application of nanofluids in heat exchangers for saving energy. Energy Conversion and Management. 198, 111886 (2019)
[45] Hussien, A.A., Al‐Kouz, W., Md Yusop, N., Abdullah, M.Z., Janvekar, A.A.: A brief survey of preparation and heat transfer enhancement of hybrid nanofluids. Strojniski Vestnik/J. Mech. Eng. 65(7-8), 441-453 (2019)
[46] Hemmat Esfe, M., Bahiraei, M., Mir, A.: Application of conventional and hybrid nanofluids in different machining processes: A critical review. Adv. Colloid Interface Sci.282, 102199 (2020)
[47] Almurtaji, S., Ali, N., Teixeira, J.A., Addali, A.: On the role of nanofluids in thermal‐hydraulic performance of heat exchangers‐a review. Nanomaterials.10, 734 (2020)
[48] Wahid, N.S., Arifin, N.M., Khashi’ie, N.S., Pop, I., Bachok, N., Hafidzuddin, M.E.H.: Mixed convection magnetic nanofluid flow past a rotating vertical porous cone. Adv. Colloid Interface Sci.15(4), 1207-1220 (2022)
[49] Dawar, A., Islam, S., Shah, Z., Lone, S.A.: A comparative analysis of the magnetized sodium alginate‐based hybrid nanofluid flows through cone, wedge, and plate. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 103(1), e202200128 (2023) · Zbl 07824434
[50] Box, G.E.P., Wilson, K.B.: On the experimental attainment of optimum conditions. J. Royal Stat. Soc., Ser. B (Methodological). 13(1), 1-45 (1951) · Zbl 0043.34402
[51] Han, H.Z., Li, B.X., Wu, H., Shao, W.: Multi‐objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method. Int J Therm Sci90, 173-186 (2015)
[52] Saraswathy, M., Prakash, D., Muthtamilselvan, M., Al Mdallal, Q.M.: Arrhenius energy on asymmetric flow and heat transfer of micropolar fluids with variable properties: A sensitivity approach. Alexandria Eng. J.61(12), 12329-12352 (2022)
[53] Shafiq, A., Sindhu, T.N.: Khalique CM. Numerical investigation and sensitivity analysis on bioconvective tangent hyperbolic nanofluid flow towards stretching surface by response surface methodology. Alexandria Eng. J. 59(6), 4533-4548 (2020)
[54] Poongavanam, G.K., Sivalingam, V., Ravichandran, S., Thakur, A.K., Kim, S.C.: Optimized modeling and experimental investigation on the thermal/electrical characteristics of MWCNT nanofluid for effective solar thermal applications. Int. J. Energy Res. 46(4), 4572-4587 (2022)
[55] Mirzaee Rasekh, S., Karimi, Y., Miramirkhani, F.: Solaimany Nazar AR. Implementation of Computational Fluid Dynamics and Response Surface Methodology to Study Nanofluid Heat Transfer. Chem. Eng. Technol. 44(12), 2236-2248 (2021)
[56] Mackolil, J., Basavarajappa, M.: Thermo‐solutal Marangoni convective assisting/resisting flow of a nanofluid with radiative heat flux: A model with heat transfer optimization. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 102(11), e202100504 (2022) · Zbl 07821849
[57] Khashi’ie, N.S., Waini, I., Mukhtar, M.F., Zainal, N.A., Bin, H.K., Arifin, N.M., et al. Response surface methodology (RSM) on the hybrid nanofluid flow subject to a vertical and permeable wedge. Nanomaterials. 12(22), 4016 (2022)
[58] Alhadri, M., Raza, J., Yashkun, U., Lund, L.A., Maatki, C., Khan, S.U., et al. Response surface methodology (RSM) and artificial neural network (ANN) simulations for thermal flow hybrid nanofluid flow with Darcy‐Forchheimer effects. J. Indian Chem. Soc.99(8), 100607 (2022)
[59] Myson, S., Mahanthesh, B.: Sensitivity analysis of nonlinear convective heat transport of a hybrid nanoliquid sandwiched by micropolar liquid using RSM. Waves Random Complex Media. 1-20 (2023)
[60] Rana, P., Gupta, G.: FEM solution to quadratic convective and radiative flow of Ag‐MgO/H2O hybrid nanofluid over a rotating cone with Hall current: Optimization using Response Surface Methodology. Math. Comput. Simul.201, 121-140 (2022) · Zbl 1540.76191
[61] Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two‐sided lid‐driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf.50(9-10), 2002-2018 (2007) · Zbl 1124.80371
[62] Nayan, A., Fauzan, N., Ilias, M.R., Zakaria, S.F., Aznam, N.H.Z.: Aligned magnetohydrodynamics (MHD) flow of hybrid nanofluid over a vertical plate through porous medium. J. Adv. Res. 92(1), 51-64 (2022)
[63] Devi, S.P.A., Devi, S.S.U.: Numerical investigation of hydromagnetic hybrid Cu ‐ Al2O3/water nanofluid flow over a permeable stretching sheet with suction. Int. J. Nonlinear Sci. Numer. Simul.17(5), 249-257 (2016)
[64] Wahid, N.S., Md Arifin, N., Khashi’ie, N.S., Pop, I., Bachok, N., Hafidzuddin, M.E.H.: MHD mixed convection flow of a hybrid nanofluid past a permeable vertical flat plate with thermal radiation effect. Alexandria Eng. J.61(4), 3323-3333 (2022)
[65] Benkhedda, M., Boufendi, T., Tayebi, T., Chamkha, A.J.: Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J. Therm. Anal. Calorim. 140(1), 411-425 (2020)
[66] Bhattad, A., Sarkar, J.: Effects of nanoparticle shape and size on the thermohydraulic performance of plate evaporator using hybrid nanofluids. J. Therm. Anal. Calorim. 143(1), 767-779 (2021)
[67] Kierzenka, J., Shampine, L.F.: A BVP solver based on residual control and the MATLAB PSE. ACM Trans. Math. Softw. 27(3), (2001) · Zbl 1070.65555
[68] Yahaya, R.I., Arifin, N.M., Ali, F.M., Isa, S.: Nanoparticle shapes effects on MHD flow of hybrid nanofluid over a stretching/shrinking sheet with slip and chemical reaction. J. Nano Res.75, 139-158 (2022)
[69] Ahmad, S., Rohni, A.M.: Pop I. Blasius and Sakiadis problems in nanofluids. Acta. Mech. 218(3-4), 195-204 (2011) · Zbl 1335.82034
[70] Ibrahim, W., Anbessa, T.: Mixed convection flow of nanofluid with Hall and ion‐slip effects using spectral relaxation method. J. Egyptian Math. Soc.27(1), 52 (2019) · Zbl 1434.80002
[71] Bosli, F., Suhaimi, A.S., Ishak, S.S., Ilias, M.R., Rahim, A.H.A., Ahmad, A.M.: Investigation of nanoparticles shape effects on aligned MHD casson nanofluid flow and heat transfer with convective boundary condition. J. Adv. Res. 91(1), 155-171 (2022)
[72] Mahanthesh, B., Mackolil, J., Mallikarjunaiah, S.M.: Response surface optimization of heat transfer rate in Falkner‐Skan flow of ZnO − EG nanoliquid over a moving wedge: Sensitivity analysis. Int. Commun. Heat Mass Transf. J.125, 105348 (2021)
[73] Mahanthesh, B., Thriveni, K., Rana, P., Muhammad, T.: Radiative heat transfer of nanomaterial on a convectively heated circular tube with activation energy and nanoparticle aggregation kinematic effects. Int. Commun. Heat Mass Transf.127, 105568 (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.