×

A fully spectral tau method for a class of linear and nonlinear variable-order time-fractional partial differential equations in multi-dimensions. (English) Zbl 1540.65402

Summary: We present a linear and nonlinear comprehensive class of variable-order (VO) time-fractional partial differential equations in multi-dimensions with Caputo VO fractional operator. This class comprises, as special cases, several linear and nonlinear equations of important applications in diverse fields, such as, the VO time-fractional telegraph equation, the VO time-fractional diffusion-wave equation and the VO time-fractional Klein-Gordon equation. A novel and accurate spectral tau method based on the shifted Gegenbauer polynomials (SGPs) is presented for the numerical treatment of the aforementioned class of equations. Actually, applying the tau method for solving this class of equations is very difficult, especially in the presence of the nonlinear term of these equations and the nature of the VO derivatives. To overcome this difficulty, new operational matrices for the VO fractional derivative and the approximation of the multiplication of the space-time Kronecker product vectors in multi-dimension are derived. These new matrices have the ability to remove the aforementioned difficulties that facing for applying the tau method. Several linear and nonlinear numerical examples are examined and compared in multi-dimensions with other methods to verify the validity, applicability and accuracy of the proposed methodology.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Ahmed, H. F., Numerical study on factional differential-algebraic systems by means of Chebyshev Pseudo spectral method, J. Taibah Univ. Sci., 14, 1, 1023-1032 (2020)
[2] Ahmed, H. F.; Hashem, W. A., A novel spectral technique for 2D fractional telegraph equation models with spatial variable coefficients, J. Taibah Univ. Sci., 16, 1, 885-894 (2022)
[3] Ahmed, H. F.; Melad, M. B., Efficient method for solving variable-order pantograph models, Pramana, 95, 4, 1-20 (2021)
[4] Ahmed, H. F.; Melad, M. B., A new numerical strategy for solving nonlinear singular Emden-Fowler delay differential models with variable order, Math. Sci., 1-15 (2022)
[5] Ahmed, H. F.; Moubarak, M. R.A.; Hashem, W. A., Gegenbauer spectral tau algorithm for solving fractional telegraph equation with convergence analysis, Pramana, 95, 2, 1-16 (2021)
[6] Atangana, A., On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 293, 104-114 (2015) · Zbl 1349.65263
[7] Chan, C. T.; Mironov, A.; Morozov, A.; Sleptsov, A., Orthogonal polynomials in mathematical physics, Rev. Math. Phys., 30, 06, Article 1840005 pp. (2018) · Zbl 1393.81018
[8] Chen, R.; Liu, F.; Anh, V., Numerical methods and analysis for a multi-term time-space variable-order fractional advection-diffusion equations and applications, J. Comput. Appl. Math., 352, 437-452 (2019) · Zbl 1448.76151
[9] Chen, Y. M.; Wei, Y. Q.; Liu, D. Y.; Yu, H., Numerical solution for a class of nonlinear variable order fractional differential equations with legendre wavelets, Appl. Math. Lett., 46, 83-88 (2015) · Zbl 1329.65172
[10] Coimbra, C. F.M., Mechanics with variable-order differential operators, Ann. Physics, 12, 692-703 (2003) · Zbl 1103.26301
[11] Dahaghin, M. S.; Hassani, H., An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation, Nonlinear Dynam., 88, 3, 1587-1598 (2017) · Zbl 1380.35158
[12] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng. Anal. Bound. Elem., 50, 412-434 (2015) · Zbl 1403.65082
[13] Doha, E. H., The coefficients of differentiated expansions and derivatives of ultraspherical polynomials, Comput. Math. Appl., 21, 2-3, 115-122 (1991) · Zbl 0723.33008
[14] Dzielinski, A.; Sierociuk, D.; Sarwas, G., Some applications of fractional order calculus, Bull. Pol. Acad. Sci. Tech. Sci., 58, 583-592 (2010) · Zbl 1220.80006
[15] El-Gindy, T.; Ahmed, H.; Melad, M., Shifted Gegenbauer operational matrix and its applications for solving fractional differential equations, J. Egyptian Math. Soc., 26, 1, 72-90 (2018) · Zbl 1436.65078
[16] El-Gindy, T. M.; Ahmed, H. F.; Melad, M. B., Effective numerical technique for solving variable order integro-differential equations, J. Appl. Math. Comput., 68, 4, 2823-2855 (2022) · Zbl 1496.65177
[17] El-Kalaawy, A. A., A computationally efficient method for a class of fractional variational and optimal control problems using fractional gegenbauer functions, Romanian Rep. Phys., 70, 2, 90109 (2018)
[18] Ganguly, A.; Basu, H., Review of five sets of piecewise constant orthogonal functions for function approximation, integration and solution of first order differential equation using these function sets, IFAC Proc. Vol., 47, 1, 386-393 (2014)
[19] Gómez-Aguilar, J. F.; Atangana, A., Time-fractional variable-order telegraph equation involving operators with Mittag-Leffler kernel, J. Electromagn. Waves Appl., 33, 2, 165-177 (2019)
[20] Gottlieb, D.; Orszag, S. A., Numerical Analysis of Spectral Methods: Theory and Applications (1977), SIAM-CBMS: SIAM-CBMS Philadelphia · Zbl 0412.65058
[21] Harmuth, H. F., Transmission of Information by Orthogonal Functions (2012), Springer Science & Business Media · Zbl 0183.48803
[22] Hassani, H.; Avazzadeh, Z.; Machado, J. A., Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series, Eng. Comput., 36, 3, 867-878 (2020)
[23] Hesameddini, E.; Rahimi, A.; Asadollahifard, E., On the convergence of a new reliable algorithm for solving multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 34, 154-164 (2016) · Zbl 1510.65178
[24] Heydari, M. H.; Avazzadeh, Z., Legendre wavelets optimization method for variable-order fractional Poisson equation, Chaos Solitons Fractals, 112, 180-190 (2018) · Zbl 1398.65316
[25] Heydari, M. H.; Avazzadeh, Z.; Haromi, M. F., A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation, Appl. Math. Comput., 341, 215-228 (2019) · Zbl 1429.65239
[26] Heydari, M. H.; Avazzadeh, Z.; Yang, Y., A computational method for solving variable-order fractional nonlinear diffusion-wave equation, Appl. Math. Comput., 352, 235-248 (2019) · Zbl 1429.65240
[27] Hosseininia, M.; Heydari, M. H., Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag-Leffler non-singular kernel, Chaos Solitons Fractals, 127, 389-399 (2019) · Zbl 1448.65103
[28] Hosseininia, M.; Heydari, M. H.; Ghaini, F. M.; Avazzadeh, Z., A wavelet method to solve nonlinear variable-order time fractional 2D Klein-Gordon equation, Comput. Math. Appl., 78, 12, 3713-3730 (2019) · Zbl 1443.65449
[29] Jiang, H.; Liu, F.; Turner, I.; Burrage, K., Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain, Comput. Math. Appl., 64, 3377-3388 (2012) · Zbl 1268.35124
[30] Liu, J.; Li, X.; Hu, X., A RBF-based differential quadrature method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 384, 222-238 (2019) · Zbl 1451.65131
[31] Maalek, F.; Gharian, D.; Heydari, M. H., A meshless method for the variable-order time fractional telegraph equation, J. Math. Ext., 13, 3, 35-56 (2019) · Zbl 1473.65239
[32] Maiti, S.; Shaw, S.; Shit, G. C., Fractional order model for thermochemical flow of blood with Dufour and Soret effects under magnetic and vibration environment, Colloids Surf. B, 197, Article 111395 pp. (2021)
[33] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (1993), John Wiley and Sons: John Wiley and Sons New York · Zbl 0789.26002
[34] Moghaddam, B. P.; Machado, J. A.T., Extended algorithms for approximating variable order fractional derivatives with applications, J. Sci. Comput., 71, 3, 1351-1374 (2017) · Zbl 1370.26017
[35] Moghaddam, B. P.; Machado, J. A.T., A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations, Comput. Math. Appl., 73, 6, 1262-1269 (2017) · Zbl 1412.65084
[36] Moghaddam, B. P.; Machado, J. A.; Babaei, A., A computationally efficient method for tempered fractional differential equations with application, J. Comput. Appl. Math., 37, 3, 3657-3671 (2018) · Zbl 1405.65092
[37] Moghaddam, B. P.; Yaghoobi, S.; Machado, J. A.T., An extended predictor-corrector algorithm for variable-order fractional delay differential equations, J. Comput. Nonlinear Dyn., 11, 6, Article 061001 pp. (2016)
[38] Mokhtary, P.; Moghaddam, B. P.; Lopes, A. M.; Machado, J. A., A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay, Numer. Algorithms, 83, 3, 987-1006 (2020) · Zbl 1436.65215
[39] Nigmatullin, R. R., To the theoretical explanation of the universal response, Phys. Status (B): Basic Res., 123, 739-746 (1984)
[40] Nigmatullin, R. R., Realization of the generalized transfer equation in a medium with fractal geometry, Phys. Status (B): Basic Res., 133, 425-430 (1986)
[41] Odibat, Z. M.; Shawagfeh, N. T., Generalized Taylor’s formula, Appl. Math. Comput., 186, 1, 286-293 (2007) · Zbl 1122.26006
[42] Oldham, K. B.; Spanier, J., The Fractional Calculus (1974), Academic Press: Academic Press New York · Zbl 0428.26004
[43] Podlubny, I., Fractional Differential Equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[44] Ramirez, L. E.S.; Coimbra, C. F.M.; Kobayashi, M. H., Variable order constitutive relation for viscoelasticity, Ann. Physics, 16, 543-552 (2007) · Zbl 1159.74008
[45] Ratner, V.; Zeevi, Y. Y., Denoising-enhancing images on elastic manifolds, IEEE Trans. Image Process., 20, 8, 2099-2109 (2011) · Zbl 1372.94218
[46] Razminia, R.; Dizaji, A.; Majd, V. J., Solution existence for non-autonomous variable-order fractional differential equations, Math. Comput. Modelling, 55, 1106-1117 (2012) · Zbl 1255.34008
[47] Sadri, K.; Aminikhah, H., A new efficient algorithm based on fifth-kind Chebyshev polynomials for solving multi-term variable-order time-fractional diffusion-wave equation, Int. J. Comput. Math., 99, 5, 966-992 (2022) · Zbl 1513.65420
[48] Shekari, Y.; Tayebi, A.; Heydari, M. H., A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation, Comput. Methods Appl. Mech. Engrg., 350, 154-168 (2019) · Zbl 1441.65079
[49] Sierociuk, D.; Dzielinski, A.; Sarwas, G.; Petras, I.; Podlubny, I.; Skovranek, T., Modelling heat transfer in heterogeneous media using fractional calculus, Philos. Trans. R. Soc., 371, Article 20130146 pp. (2013) · Zbl 1382.80004
[50] Soon, C. M.; Coimbra, C. F.M.; Kobayashi, M. H., The variable viscoelasticity oscillator, Ann. Physics, 14, 6, 378-389 (2005) · Zbl 1125.74316
[51] Sun, H. G.; Chen, Y. Q.; Chen, W., Random-order fractional differential equation models, Signal Process., 91, 525-530 (2011) · Zbl 1203.94056
[52] Sun, H. G.; Chen, W.; Li, C.; Chen, Y. Q., Fractional differential models for anomalous diffusion, Phys. A, 389, 14, 2719-2724 (2010)
[53] Taghian, H. T.; Abd-Elhameed, W. M.; Moatimid, G. M.; Youssri, Y. H., Shifted Gegenbauer-Galerkin algorithm for hyperbolic telegraph type equation, Internat. J. Modern Phys. C, 32, 09, Article 2150118 pp. (2021)
[54] Wang, H.; Zheng, X., Wellposedness and regularity of the variable-order time-fractional diffusion equations, J. Math. Anal. Appl., 475, 2, 1778-1802 (2019) · Zbl 1516.35477
[55] Yue, X. K.; Dai, H. H.; Liu, C. S., Optimal scale polynomial interpolation technique for obtaining periodic solutions to the Duffing oscillator, Nonlinear Dynam., 77, 1455-1468 (2014)
[56] Zahra, W. K.; Hikal, M. M., Non standard finite difference method for solving variable order fractional optimal control problems, J. Vib. Control, 23, 6, 948-958 (2017) · Zbl 1387.93095
[57] Zhang, S., Existence and uniqueness result of solutions to initial value problems of fractional differential equations of variable-order, J. Fract. Calc. Anal., 4, 1, 82-98 (2013) · Zbl 1488.34070
[58] Zhang, S., Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions, Commun. Nonlinear Sci. Numer. Simul., 18, 3289-3297 (2013) · Zbl 1344.34022
[59] Zhang, Y.; Qian, J.; Papelis, C.; Sun, P.; Yu, Z., Improved understanding of bimolecular reactions in deceptively simple homogeneous media: From laboratory experiments to Lagrangian quantification, Water Resour. Res., 50, 2, 1704-1715 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.