×

Conservative finite difference methods for the Boussinesq paradigm equation. (English) Zbl 1540.65341

Summary: In this paper, we concentrate on developing and analyzing two types of finite difference schemes with energy conservation properties for solving the Boussinesq paradigm equation. Firstly, by introducing the auxiliary potential function \(\frac{\partial u}{\partial t} = \Delta v\) and \(\lim_{|x| \to \infty} v=0\), the BPE is reformulated as an equivalent system of coupled equations. Then a class of efficient difference schemes are proposed for solving the resulting system, where one proposed scheme is a two-level nonlinear difference scheme and the other is a three-level linearized difference scheme using the invariant energy quadratization technique. Subsequently, we present the theoretical analysis of the proposed energy conservative finite difference schemes, which involves the discrete energy conservation properties, unique solvability and optimal error estimates. By using the discrete energy method, it is proven that the proposed schemes can achieve the optimal convergence rates of \(\mathcal{O} (\Delta t^2 + h_x^2 + h_y^2)\) in discrete \(L^2\)-, \(H^1\)- and \(L^\infty\)-norms. At last, numerical experiments illustrate the physical behaviors and efficiency of the proposed schemes.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35Q35 PDEs in connection with fluid mechanics

Software:

LIMbook
Full Text: DOI

References:

[1] Bao, W.; Cai, Y.; Zhao, X., A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime, SIAM J. Numer. Anal., 52, 2488-2511 (2014) · Zbl 1310.65131
[2] Brugnano, L.; Gurioli, G.; Zhang, C., Spectrally accurate energy-preserving methods for the numerical solution of the good Boussinesq equation, Numer. Methods Partial Differ. Equ., 35, 1343-1362 (2019) · Zbl 1418.65117
[3] Brugnano, L.; Iavernaro, F., Line Integral Methods for Conservative Problems (2016), CRC Press: CRC Press Boca Raton, FL · Zbl 1335.65097
[4] Cai, J.; Wang, Y., Local structure-preserving algorithms for the good Boussinesq equation, J. Comput. Phys., 239, 72-89 (2013) · Zbl 1284.65099
[5] Cano, B., Conserved quantities of some Hamiltonian wave equations after full discretization, Numer. Math., 103, 197-223 (2006) · Zbl 1096.65125
[6] Chen, W.; Li, X.; Liang, D., Energy-conserved splitting FDTD methods for Maxwell’s equations, Numer. Math., 108, 445-485 (2008) · Zbl 1185.78020
[7] Christou, M. A.; Christov, C. I., Galerkin spectral method for the 2D solitary waves of Boussinesq paradigm equation, (Application of Mathematics in Technical and Natural Sciences, Sozopol, June (2009) 22-27, AIP Conf. Proc., 1186 (2009), American Institute of Physics: American Institute of Physics Melville), 217-225
[8] Christov, C. I., Conservative difference scheme for boussinesq model of surface waves, (Proc. ICFD V (1996), Oxford University Press: Oxford University Press Oxford), 343-349 · Zbl 0890.76048
[9] Christov, C. I., An Energy-Consistent Dispersive Shallow-Water Model. An Energy-Consistent Dispersive Shallow-Water Model, Wave Motion, 34, 161-174 (2001) · Zbl 1074.76510
[10] Cohen, D.; Hairer, E.; Lubich, C., Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations, Numer. Math., 110, 113-143 (2008) · Zbl 1163.65066
[11] Dahlby, M.; Owren, B., A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33, 2318-2340 (2011) · Zbl 1246.65240
[12] Dehghan, M.; Salehi, R., A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation, Appl. Math. Model., 36, 1939-1956 (2012) · Zbl 1243.76069
[13] Deng, D.; Liang, D., The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations, Appl. Math. Comput., 329, 188-209 (2018) · Zbl 1427.65157
[14] Deng, D.; Zhang, C., Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations, Appl. Math. Model., 39, 1033-1049 (2015) · Zbl 1432.65119
[15] Gong, Y.; Zhao, J.; Yang, X.; Wang, Q., Fully discrete second-order linear schemes for hydrodynamic phase field models of binary viscous fluid flows with variable densities, SIAM J. Sci. Comput., 40, 138-167 (2018) · Zbl 1457.65050
[16] Kolkovska, N., Two families of finite difference schemes for multidimensional Boussinesq paradigm equation, (Application of Mathematics in Technical and Natural Sciences, Sozopol, June (2010) 21-26, AIP Conf. Proc., 1301 (2010), American Institute of Physics: American Institute of Physics Melville), 395-403 · Zbl 1268.65113
[17] Kolkovska, N.; Dimova, M., A new conservative finite difference scheme for Boussinesq paradigm equation, Cent. Eur. J. Math., 10, 1159-1171 (2012) · Zbl 1262.65103
[18] Liao, H.; Sun, Z., Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differ. Equ., 26, 37-60 (2010) · Zbl 1196.65154
[19] Lin, Q.; Wu, Y.; Loxton, R.; Lai, S., Linear B-spline finite element method for the improved Boussinesq equation, J. Comput. Appl. Math., 224, 658-667 (2009) · Zbl 1158.65074
[20] Oliver, M.; West, M.; Wulff, C., Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations, Numer. Math., 97, 493-535 (2004) · Zbl 1060.65106
[21] Ortega, T.; Sanz-Serna, J. M., Nonlinear stability and convergence of finite-difference methods for the good Boussinesq equation, Numer. Math., 58, 215-229 (1990) · Zbl 0749.65082
[22] Pani, A. K.; Saranga, H., Finite element Galerkin method for the good Boussinesq equation, Nonlinear Anal., 29, 937-956 (1997) · Zbl 0880.35097
[23] Polat, N.; Ertas, A., Existence and blow-up of solution of Cauchy problem for the generalized damped multidimensional Boussinesq equation, J. Math. Anal. Appl., 349, 10-20 (2009) · Zbl 1156.35331
[24] Shen, J.; Xu, J.; Yang, J., The scalar auxiliary variable (SAV) approach for gradient flows, J. Comput. Phys., 353, 407-416 (2018) · Zbl 1380.65181
[25] Shokri, A.; Dehghan, M., A Not-a-Knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation, Comput. Phys. Comm., 181, 1990-2000 (2010) · Zbl 1426.76569
[26] Soerensen, M. P.; Christiansen, P. L.; Lohmdahl, P. S., Solitary waves on nonlinear elastic rods I., J. Acoust. Sos. Am., 76, 871-879 (1984) · Zbl 0564.73035
[27] Su, C.; Yao, W., A deuflhard-type exponential integrator Fourier pseudo-spectral method for the good Boussinesq equation, J. Sci. Comput., 83, 1-19 (2020) · Zbl 1448.35456
[28] Wang, S.; Chen, G., Cauchy problem of the generalized double dispersion equation, Nonlinear Anal., 64, 159-173 (2006) · Zbl 1092.35056
[29] Wang, W.; Zhang, C., Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space, Numer. Math., 115, 451-474 (2010) · Zbl 1193.65140
[30] Wang, Q.; Zhang, Z.; Zhang, X.; Zhu, Q., Energy-preserving finite volume element method for the improved Boussinesq equation, J. Comput. Phys., 270, 58-69 (2014) · Zbl 1349.76405
[31] Xu, R.; Liu, Y.; Yu, T., Global existence of solution for Cauchy problem of multidimensional generalized double dispersion equations, Nonlinear Anal., 71, 4977-4983 (2009) · Zbl 1167.35418
[32] Yan, J.; Zhang, Z., New energy-preserving schemes using Hamiltonian boundary value and Fourier pseudospectral methods for the numerical solution of the good Boussinesq equation, Comput. Phys. Comm., 201, 33-42 (2016) · Zbl 1348.76107
[33] Yan, J.; Zhang, Z.; Zhao, T.; Liang, D., High-order energy-preserving schemes for the improved Boussinesq equation, Numer. Methods Partial Differ. Equ., 34, 1145-1165 (2018) · Zbl 1407.76109
[34] Yang, X., First and second-order, unconditionally energy stable numerical schemes for the phase feld model of homopolymer blends, J. Comput. Phys., 327, 294-316 (2016) · Zbl 1373.82106
[35] Zhang, Z.; Lu, F., Quadratic finite volume element method for the improved Boussinesq equation, J. Math. Phys., 53, Article 013505 pp. (2012) · Zbl 1273.35246
[36] Zhang, C.; Wang, H.; Huang, J., A second order operator splitting numerical scheme for the Good Boussinesq equation, Appl. Numer. Math., 119, 179-193 (2017) · Zbl 1368.65203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.