×

Sample size optimization for clinical trials using graphical approaches for multiplicity adjustment. (English) Zbl 1540.62202

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] BretzF, MaurerW, BrannathW, PoschM. A graphical approach to sequentially rejective multiple test procedures. Stat Med. 2009;28(4):586‐604. doi:10.1002/sim.3495
[2] BurmanCF, SonessonC, GuilbaudO. A recycling framework for the construction of Bonferroni‐based multiple tests. Stat Med. 2009;28(5):739‐761. doi:10.1002/sim.3513
[3] HochbergY, TamhaneAC. Multiple Comparison Procedures. New York, New York: John Wiley and Sons; 1987. · Zbl 0731.62125
[4] TamhaneAC, GouJ. Advances in
[( p \]\)‐Value Based Multiple Test Procedures. J Biopharm Stat. 2018;28(1):10‐27.
[5] TamhaneAC, GouJ. Multiple test procedures based on
[( p \]\)‐values. In: CuiX (ed.), DickhausT (ed.), DingY (ed.), HsuJC (ed.), eds. Handbook of Multiple Comparisons. New York: Chapman and Hall/CRC; 2022:11‐34. doi:10.1201/9780429030888 · Zbl 1483.62134
[6] VickerstaffV, OmarRZ, AmblerG. Methods to adjust for multiple comparisons in the analysis and sample size calculation of randomised controlled trials with multiple primary outcomes. BMC Med Res Methodol. 2019;19(1):129. doi:10.1186/s12874‐019‐0754‐4
[7] WangL, ChenY, ZhuH. Implementing optimal allocation in clinical trials with multiple endpoints. J Stat Plann Inference. 2017;182:88‐99. https://www.sciencedirect.com/science/article/pii/S0378375816301069 · Zbl 1394.62157
[8] RistlR, XiD, GlimmE, PoschM. Optimal exact tests for multiple binary endpoints. Comput Stat Data Anal. 2018;122:1‐17. https://www.sciencedirect.com/science/article/pii/S0167947318300021 · Zbl 1469.62132
[9] ZhanT, HartfordA, KangJ, OffenW. Optimizing graphical procedures for multiplicity control in a confirmatory clinical trial via deep learning. Stat Biopharm Res. 2022;14(1):92‐102. doi:10.1080/19466315.2020.1799855
[10] DmitrienkoA, TamhaneAC, BretzF. In: DmitrienkoA (ed.), TamhaneA (ed.), BretzF (ed.), eds. Multiple Testing Problems in Pharmaceutical Statistics. Boca Raton, Florida: Taylor & Francis; 2009.
[11] GouJ, TamhaneAC, XiD, RomD. A class of improved hybrid Hochberg‐Hommel type step‐up multiple test procedures. Biometrika. 2014;101(4):899‐911. doi:10.1093/biomet/asu032 · Zbl 1306.62173
[12] MielkeJ, JonesB, JilmaB, KönigF. Sample size for multiple hypothesis testing in biosimilar development. Stat Biopharm Res. 2018;10(1):39‐49. doi:10.1080/19466315.2017.1371071
[13] SennS, BretzF. Power and sample size when multiple endpoints are considered. Pharm Stat. 2007;6(3):161‐170. https://onlinelibrary.wiley.com/doi/abs/10.1002/pst.301
[14] GouJ. Sample size optimization and initial allocation of the significance levels in group sequential trials with multiple endpoints. Biom J. 2022;64(2):301‐311. https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.202000081 · Zbl 1523.62122
[15] PiantadosiS. Clinical Trials: A Methodologic Perspective. 3rd ed.Hoboken, New Jersey: John Wiley & Sons, Inc.; 2017. · Zbl 1374.92002
[16] BergmannL, MauteL, HeilG, et al. A prospective randomised phase‐II trial with gemcitabine versus gemcitabine plus sunitinib in advanced pancreatic cancer: A study of the CESAR Central European Society for Anticancer Drug Research‐EWIV. Eur J Cancer. 2015;51(1):27‐36. doi:10.1016/j.ejca.2014.10.010
[17] AdunlinG, CyrusJWW, DranitsarisG. Correlation between progression‐free survival and overall survival in metastatic breast cancer patients receiving anthracyclines, taxanes, or targeted therapies: A trial‐level meta‐analysis. Breast Cancer Res Treat. 2015;154:591‐608.
[18] HessLM, BrnabicA, MasonO, LeeP, BarkerS. Relationship between progression‐free survival and overall survival in randomized clinical trials of targeted and biologic agents in oncology. J Cancer. 2019;10:3717‐3727. https://www.jcancer.org/v10p3717.htm
[19] GouJ. On dependence assumption in
[( p \]\)‐value based multiple test procedures. J Biopharm Stat. 2023;33(5):596‐610. doi:10.1080/10543406.2022.2162066
[20] GreenS, BenedettiJ, SmithA, CrowleyJ. Clinical Trials in Oncology. 3rd ed.Chapman & Hall/CRC Interdisciplinary Statistics, Boca Raton, Florida: Taylor & Francis; 2012.
[21] JohnsonDH, FehrenbacherL, NovotnyWF, et al. Randomized Phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non‐small‐cell lung cancer. J Clin Oncol. 2004;22(11):2184‐2191. doi:10.1200/JCO.2004.11.022
[22] BlumenthalGM, KaruriSW, ZhangH, et al. Overall response rate, progression‐free survival, and overall survival with targeted and standard therapies in advanced non-small‐cell lung cancer: US Food and drug administration trial‐level and patient‐level analyses. J Clin Oncol. 2015;33(9):1008‐1014. doi:10.1200/JCO.2014.59.0489
[23] HamasakiT, EvansSR, AsakuraK. Design, data monitoring, and analysis of clinical trials with co‐primary endpoints: A review. J Biopharm Stat. 2018;28(1):28‐51. doi:10.1080/10543406.2017.1378668
[24] GouJ. Reverse graphical approaches for multiple test procedures. J Biopharm Stat. 2023;1‐21. doi:10.1080/10543406.2023.2171428
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.