×

Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities. (English) Zbl 1540.60146

Summary: This paper aims at studying a generalized Camassa-Holm equation under random perturbation. We establish a local well-posedness result in the sense of Hadamard, i.e., existence, uniqueness and continuous dependence on initial data, as well as blow-up criteria for pathwise solutions in the Sobolev spaces \(H^s\) with \(s>3/2\) for \(x\in \mathbb{R}\). The analysis on continuous dependence on initial data for nonlinear stochastic partial differential equations has gained less attention in the literature so far. In this work, we first show that the solution map is continuous. Then we introduce a notion of stability of exiting time. We provide an example showing that one cannot improve the stability of the exiting time and simultaneously improve the continuity of the dependence on initial data. Finally, we analyze the regularization effect of nonlinear noise in preventing blow-up. Precisely, we demonstrate that global existence holds true almost surely provided that the noise is strong enough.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35Q51 Soliton equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs

References:

[1] Albeverio, S.; Brzeźniak, Z.; Daletskii, A., Stochastic Camassa-Holm equation with convection type noise, J. Differ. Equ., 276, 404-432, 2021 · Zbl 1469.60202
[2] Alonso-Orán, D.; Bethencourt de León, A.; Takao, S., The Burgers’ equation with stochastic transport: shock formation, local and global existence of smooth solutions, NoDEA Nonlinear Differ. Equ. Appl., 26, 6, Paper No. 57, 33, 2019 · Zbl 1430.35280
[3] Alonso-Orán, D.; Miao, Y.; Tang, H., Global existence, blow-up and stability for a stochastic transport equation with non-local velocity, J. Differ. Equ., 335, 244-293, 2022 · Zbl 1494.60070
[4] Alonso-Orán, D.; Rohde, C.; Tang, H., A local-in-time theory for singular SDEs with applications to fluid models with transport noise, J. Nonlinear Sci., 31, 6, Paper No. 98,55, 2021 · Zbl 1477.60105
[5] Breit, D.; Feireisl, E.; Hofmanová, M., Stochastically forced compressible fluid flows. De Gruyter Series in Applied and Numerical Mathematics, 2018, Berlin: De Gruyter, Berlin · Zbl 1387.76001
[6] Brzeźniak, Z.; Maslowski, B.; Seidler, J., Stochastic nonlinear beam equations, Probab. Theory Relat. Fields, 132, 1, 119-149, 2005 · Zbl 1071.60053
[7] Brzeźniak, Z.; Motyl, E., Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains, J. Differ. Equ., 254, 4, 1627-1685, 2013 · Zbl 1259.35230
[8] Brzeźniak, Z.; Motyl, E., Fractionally dissipative stochastic quasi-geostrophic type equations on \(\mathbb{R}^d\), SIAM J. Math. Anal., 51, 3, 2306-2358, 2019 · Zbl 1419.60049
[9] Brzeźniak, Z.; Ondreját, M., Strong solutions to stochastic wave equations with values in Riemannian manifolds, J. Funct. Anal., 253, 2, 449-481, 2007 · Zbl 1141.58019
[10] Camassa, R.; Holm, DD, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 11, 1661-1664, 1993 · Zbl 0972.35521
[11] Chen, G-QG; Pang, PHC, Nonlinear anisotropic degenerate parabolic-hyperbolic equations with stochastic forcing, J. Funct. Anal., 281, 12, Paper No. 109222,48, 2021 · Zbl 1475.35429
[12] Chen, Y.; Duan, J.; Gao, H., Global well-posedness of the stochastic Camassa-Holm equation, Commun. Math. Sci., 19, 3, 607-627, 2021 · Zbl 1479.35967
[13] Chen, Y.; Duan, J.; Gao, H., Wave-breaking and moderate deviations of the stochastic Camassa-Holm equation with pure jump noise, Phys. D, 424, Paper No. 132944, 12, 2021 · Zbl 1489.60109
[14] Chen, Y.; Gao, H., Well-posedness and large deviations of the stochastic modified Camassa-Holm equation, Potential Anal., 45, 2, 331-354, 2016 · Zbl 1350.60055
[15] Chen, Y.; Miao, Y.; Shi, S., Global existence and wave breaking for a stochastic two-component Camassa-Holm system, J. Math. Phys., 64, 1, Paper No. 011505,28, 2023 · Zbl 1511.35389
[16] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 2, 229-243, 1998 · Zbl 0923.76025
[17] de Bouard, A.; Debussche, A., A stochastic nonlinear Schrödinger equation with multiplicative noise, Commun. Math. Phys., 205, 1, 161-181, 1999 · Zbl 0952.60061
[18] Debussche, A.; Glatt-Holtz, NE; Temam, R., Local martingale and pathwise solutions for an abstract fluids model, Physica D, 240, 14-15, 1123-1144, 2011 · Zbl 1230.60065
[19] Fedrizzi, E.; Flandoli, F., Pathwise uniqueness and continuous dependence of SDEs with non-regular drift, Stochastics, 83, 3, 241-257, 2011 · Zbl 1221.60081
[20] Flandoli, F.; Gubinelli, M.; Priola, E., Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180, 1, 1-53, 2010 · Zbl 1200.35226
[21] Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4(1), 47-66 (1981/82) · Zbl 1194.37114
[22] Galimberti, L., Holden, H., Karlsen, K.H., Pang, P.H.C.: Global existence of dissipative solutions to the Camassa-Holm equation with transport noise (2022) · Zbl 1533.35376
[23] Gawarecki, L.; Mandrekar, V., Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations Probability and Its Applications (New York), 2011, Heidelberg: Springer, Heidelberg · Zbl 1228.60002
[24] Geng, X.; Xue, B., An extension of integrable Peakon equations with cubic nonlinearity, Nonlinearity, 22, 8, 1847-1856, 2009 · Zbl 1171.37331
[25] Glatt-Holtz, N.; Ziane, M., Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differ. Equ., 14, 5-6, 567-600, 2009 · Zbl 1195.60090
[26] Glatt-Holtz, NE; Vicol, VC, Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise, Ann. Probab., 42, 1, 80-145, 2014 · Zbl 1304.35545
[27] Henry, D.: Geometric theory of semilinear parabolic equations. 840:iv+348 (1981) · Zbl 0456.35001
[28] Himonas, AA; Holliman, C., The Cauchy problem for a generalized Camassa-Holm equation, Adv. Differ. Equ., 19, 1-2, 161-200, 2014 · Zbl 1285.35093
[29] Himonas, AA; Kenig, C., Non-uniform dependence on initial data for the CH equation on the line, Differ. Integral Equ., 22, 3-4, 201-224, 2009 · Zbl 1240.35242
[30] Himonas, AA; Kenig, C.; Misiołek, G., Non-uniform dependence for the periodic CH equation, Commun. Partial Differ. Equ., 35, 6, 1145-1162, 2010 · Zbl 1193.35189
[31] Himonas, AA; Misiołek, G., Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Commun. Math. Phys., 296, 1, 285-301, 2010 · Zbl 1195.35247
[32] Holden, H.; Karlsen, KH; Pang, PHC, The Hunter-Saxton equation with noise, J. Differ. Equ., 270, 725-786, 2021 · Zbl 1451.35266
[33] Holden, H.; Karlsen, KH; Pang, PHC, Global well-posedness of the viscous Camassa-Holm equation with gradient noise, Discrete Contin. Dyn. Syst., 43, 2, 568-618, 2023 · Zbl 1515.35376
[34] Hone, ANW; Lundmark, H.; Szmigielski, J., Explicit multipeakon solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type equation, Dyn. Partial Differ. Equ., 6, 3, 253-289, 2009 · Zbl 1179.37092
[35] Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58, 3, 181-205, 1975 · Zbl 0343.35056
[36] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41, 7, 891-907, 1988 · Zbl 0671.35066
[37] Koch, H.; Tzvetkov, N., Nonlinear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., 30, 1833-1847, 2005 · Zbl 1156.35460
[38] Kröker, I.; Rohde, C., Finite volume schemes for hyperbolic balance laws with multiplicative noise, Appl. Numer. Math., 62, 4, 441-456, 2012 · Zbl 1241.65013
[39] Krylov, N.V., Rozovskiĭ, B.L.: Stochastic evolution equations. In: Current problems in mathematics, Vol. 14 (Russian), pp. 71-147, 256. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow (1979)
[40] Lenells, J.; Wunsch, M., On the weakly dissipative Camassa-Holm, Degasperis-Procesi, and Novikov equations, J. Differ. Equ., 255, 3, 441-448, 2013 · Zbl 1284.35376
[41] Li, J.; Liu, H.; Tang, H., Stochastic MHD equations with fractional kinematic dissipation and partial magnetic diffusion in \({\mathbb{R} }^2\), Stoch. Process. Appl., 135, 139-182, 2021 · Zbl 1464.35238
[42] Marinelli, C.; Prévôt, C.; Röckner, M., Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise, J. Funct. Anal., 258, 2, 616-649, 2010 · Zbl 1186.60060
[43] Miao, Y.; Wang, Z.; Zhao, Y., Noise effect in a stochastic generalized Camassa-Holm equation, Commun. Pure Appl. Anal., 21, 10, 3529-3558, 2022 · Zbl 1498.35641
[44] Novikov, V., Generalizations of the Camassa-Holm equation, J. Phys. A, 42, 34, 342002, 14, 2009 · Zbl 1181.37100
[45] Ren, P., Tang, H., Wang, F.-Y.: Distribution-path dependent nonlinear SPDEs with application to stochastic transport type equations. arXiv:2007.09188 (2020)
[46] Rohde, C.; Tang, H., On a stochastic Camassa-Holm type equation with higher order nonlinearities, J. Dyn. Differ. Equ., 33, 4, 1823-1852, 2021 · Zbl 1477.60101
[47] Rohde, C.; Tang, H., On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena, NoDEA Nonlinear Differ. Equ. Appl., 28, 1, Paper No. 5,34, 2021 · Zbl 1456.60161
[48] Tang, H., On the pathwise solutions to the Camassa-Holm equation with multiplicative noise, SIAM J. Math. Anal., 50, 1, 1322-1366, 2018 · Zbl 1387.35537
[49] Tang, H.: On stochastic Euler-Poincaré equations driven by pseudo-differential/multiplicative noise (2022). arXiv:2002.08719v4
[50] Tang, H.; Liu, Z., Continuous properties of the solution map for the Euler equations, J. Math. Phys., 55, 3, 031504, 10, 2014 · Zbl 1293.35229
[51] Tang, H.; Liu, Z., Well-posedness of the modified Camassa-Holm equation in Besov spaces, Z. Angew. Math. Phys., 66, 4, 1559-1580, 2015 · Zbl 1327.35345
[52] Tang, H.; Shi, S.; Liu, Z., The dependences on initial data for the b-family equation in critical Besov space, Monatsh. Math., 177, 3, 471-492, 2015 · Zbl 1319.35227
[53] Tang, H., Wang, F.-Y.: A general framework for solving singular spdes with applications to fluid models driven by pseudo-differential noise (2022). arXiv:2208.08312
[54] Tang, H.; Wang, Z-A, Strong solutions to a nonlinear stochastic aggregation-diffusion equation, Commun. Contemp. Math., 2023 · Zbl 1533.35378 · doi:10.1142/S0219199722500730
[55] Tang, H.; Yang, A., Noise effects in some stochastic evolution equations: global existence and dependence on initial data, Ann. Inst. Henri Poincaré Probab. Stat., 59, 1, 378-410, 2023 · Zbl 1508.60070
[56] Tang, H.; Zhao, Y.; Liu, Z., A note on the solution map for the periodic Camassa-Holm equation, Appl. Anal., 93, 8, 1745-1760, 2014 · Zbl 1310.35078
[57] Taylor, M., Commutator estimates, Proc. Am. Math. Soc., 131, 5, 1501-1507, 2003 · Zbl 1022.35096
[58] Taylor, M., Partial Differential Equations III. Applied Mathematical Sciences, 2011, New York: Springer, New York · Zbl 1206.35004
[59] Wu, S.; Yin, Z., Blow-up and decay of the solution of the weakly dissipative Degasperis-Procesi equation, SIAM J. Math. Anal., 40, 2, 475-490, 2008 · Zbl 1216.35126
[60] Zhou, S.; Mu, C., The properties of solutions for a generalized \(b\)-family equation with Peakons, J. Nonlinear Sci., 23, 5, 863-889, 2013 · Zbl 1277.35134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.