×

The critical variational setting for stochastic evolution equations. (English) Zbl 1540.60136

The authors introduce a critical variational framework for the stochastic evolution equations \[ du(t) + A(t,u(t))\, dt = B(t,u(t))\, dW(t), \quad u(0)=u_0, \] where \(A:\mathbb R_+ \times \Omega \times V \to V^\ast\) and \(B:\mathbb R_+ \times \Omega \times V \to \mathcal L_2(U,H)\), \(V \hookrightarrow H \hookrightarrow V^\ast\) is a triple of Hilbert spaces, and \(W\) a cylindrical Brownian motion on another Hilbert space \(U\). Assume that the nonlinearities \((A,B)\) are of quasi-linear type: \[ A(t,v)= A_0(t,v) v - F(t,v), \quad B(t,v)= B_0(t,v) v + G(t,v), \] where \((A_0,B_0)\) and \((F,G)\) are the quasi-linear and semi-linear parts of \((A,B)\). Then, under a coercivity condition and a local Lipschitz condition on the coefficients, the authors prove global existence and uniqueness for the above abstract equation, as well as continuous dependence of solutions on initial data. The abstract results are applied to stochastic Cahn-Hilliard equation, stochastic tamed Navier-Stokes equations, generalized Burgers equations and so on.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
49J20 Existence theories for optimal control problems involving partial differential equations
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Agresti, A.: The primitive equations with rough transport noise: global well-posedness and regularity (2023). arXiv:2310.01193
[2] Agresti, A., Hieber, M., Hussein, A., Saal, M.: The stochastic primitive equations with non-isothermal turbulent pressure (2022). arXiv:2210.05973
[3] Agresti, A., Hieber, M., Hussein, A., Saal, M.: The stochastic primitive equations with transport noise and turbulent pressure. Stoch. Partial Differ. Equ. Anal. Comput. 1-81 (2022)
[4] Agresti, A., Veraar, M.C.: Stochastic maximal \(L^p(L^q)\)-regularity for second order systems with periodic boundary conditions. To appear in Ann. Inst. Henri Poincaré Probab. Stat. (2021). arXiv:2106.01274
[5] Agresti, A., Veraar, M.C.: Stochastic Navier-Stokes equations for turbulent flows in critical spaces. Commun. Math. Phys. (2021, to appear). arXiv:2107.03953
[6] Agresti, A., Veraar, M.C.: Nonlinear parabolic stochastic evolution equations in critical spaces part I. Stochastic maximal regularity and local existence. Nonlinearity 35(8), 4100-4210 (2022) · Zbl 1496.60068
[7] Agresti, A.; Veraar, MC, Nonlinear parabolic stochastic evolution equations in critical spaces part II: blow-up criteria and instataneous regularization, J. Evol. Equ., 22, 2, 56, 2022 · Zbl 1491.60093 · doi:10.1007/s00028-022-00786-7
[8] Agresti, A., Veraar, M.C.: Reaction-diffusion equations with transport noise and critical superlinear diffusion: global well-posedness of weakly dissipative systems (2023). arXiv:2301.06897
[9] Agresti, A.; Veraar, MC, Reaction-diffusion equations with transport noise and critical superlinear diffusion: local well-posedness and positivity, J. Differ. Equ., 368, 247-300, 2023 · Zbl 1518.35442 · doi:10.1016/j.jde.2023.05.038
[10] Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. In: Evolutionary Equations. vol. I, Handb. Differ. Equ., pp. 1-85. North-Holland, Amsterdam (2004) · Zbl 1082.35001
[11] Barbu, V., A variational approach to nonlinear stochastic differential equations with linear multiplicative noise, ESAIM Control Optim. Calc. Var., 25, 71, 2019 · Zbl 1437.60035 · doi:10.1051/cocv/2018065
[12] Barbu, V.; Röckner, M., Variational solutions to nonlinear stochastic differential equations in Hilbert spaces, Stoch. Partial Differ. Equ. Anal. Comput., 6, 3, 500-524, 2018 · Zbl 1427.60115
[13] Bensoussan, A.; Temam, R., Equations aux derivees partielles stochastiques non lineaires, Isr. J. Math., 11, 1, 95-129, 1972 · Zbl 0241.35009 · doi:10.1007/BF02761449
[14] Bergh, J.; Löfström, J., Interpolation Spaces. An Introduction, 1976, Berlin: Springer, Berlin · Zbl 0344.46071 · doi:10.1007/978-3-642-66451-9
[15] Brzeźniak, Z.; Dhariwal, G., Stochastic tamed Navier-Stokes equations on \({\mathbb{R} }^3\): the existence and the uniqueness of solutions and the existence of an invariant measure, J. Math. Fluid Mech., 22, 2, 23, 2020 · Zbl 1439.60058 · doi:10.1007/s00021-020-0480-z
[16] Brzeźniak, Z.; Liu, W.; Zhu, J., Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17, 283-310, 2014 · Zbl 1310.60091 · doi:10.1016/j.nonrwa.2013.12.005
[17] Cardon-Weber, C.; Millet, A., On strongly Petrovskiĭ’s parabolic SPDEs in arbitrary dimension and application to the stochastic Cahn-Hilliard equation, J. Theor. Probab., 17, 1, 1-49, 2004 · Zbl 1049.60057 · doi:10.1023/B:JOTP.0000020474.79479.fa
[18] Chandler-Wilde, SN; Hewett, DP; Moiola, A., Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples, Mathematika, 61, 2, 414-443, 2015 · Zbl 1341.46014 · doi:10.1112/S0025579314000278
[19] Da Prato, G.; Debussche, A., Stochastic Cahn-Hilliard equation, Nonlinear Anal., 26, 2, 241-263, 1996 · Zbl 0838.60056 · doi:10.1016/0362-546X(94)00277-O
[20] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions, Volume 152 of Encyclopedia of Mathematics and its Applications, 2014, Cambridge: Cambridge University Press, Cambridge · Zbl 1317.60077 · doi:10.1017/CBO9781107295513
[21] Flandoli, F.: Random perturbation of PDEs and fluid dynamic models, volume 2015 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]
[22] Gao, P., The stochastic Swift-Hohenberg equation, Nonlinearity, 30, 9, 3516-3559, 2017 · Zbl 1372.60089 · doi:10.1088/1361-6544/aa7e99
[23] Gawedzki, K., Kupiainen, A.: Universality in turbulence: an exactly solvable model. In: Low-Dimensional Models in Statistical Physics and Quantum Field Theory, volume 469 of Lecture Notes in Phys., pp. 71-105. Springer, Berlin (1996) · Zbl 0919.60094
[24] Geiss, S.: Sharp convex generalizations of stochastic Gronwall inequalities (2021). arXiv:2112.05047
[25] Gess, B., Strong solutions for stochastic partial differential equations of gradient type, J. Funct. Anal., 263, 8, 2355-2383, 2012 · Zbl 1267.60072 · doi:10.1016/j.jfa.2012.07.001
[26] Gess, B., Yaroslavtsev, I.: Stabilization by transport noise and enhanced dissipation in the Kraichnan model (2021). arXiv:2104.03949
[27] Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order, Volume 224 of Grundlehren der Mathematischen Wissenschaften, 1983, Berlin: Springer, Berlin · Zbl 0562.35001
[28] Glatt-Holtz, N.; Ziane, M., Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differ. Equ., 14, 5-6, 567-600, 2009 · Zbl 1195.60090
[29] Gnann, M.V., Hoogendijk, J., Veraar, M.C.: Higher order moments for SPDE with monotone nonlinearities (2022). arXiv:2203.15307
[30] Gyöngy, I., On stochastic equations with respect to semimartingales. III, Stochastics, 7, 4, 231-254, 1982 · Zbl 0495.60067 · doi:10.1080/17442508208833220
[31] Hytönen, T.P., van Neerven, J.M.A.M., Veraar, M.C., Weis, L.: Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory, Volume 63 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer (2016) · Zbl 1366.46001
[32] Kallenberg, O.: Foundations of Modern Probability, Volume 99 of Probability Theory and Stochastic Modelling. Springer, Cham [2021] 2021. Third edition [of 1464694] · Zbl 1478.60001
[33] Kim, K-H, On stochastic partial differential equations with variable coefficients in \(C^1\) domains, Stoch. Process. Appl., 112, 2, 261-283, 2004 · Zbl 1074.60071 · doi:10.1016/j.spa.2004.02.006
[34] Kim, K-H, \(L_p\) estimates for SPDE with discontinuous coefficients in domains, Electron. J. Probab., 10, 1, 1-20, 2005 · Zbl 1065.60079
[35] Kraichnan, RH, Small-scale structure of a scalar field convected by turbulence, Phys. Fluids, 11, 5, 945-953, 1968 · Zbl 0164.28904 · doi:10.1063/1.1692063
[36] Kreĭn, S.G., Yu, I, Petunīn, Semënov, E.M.: Interpolation of Linear Operators, Volume 54 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1982). Translated from the Russian by J. Szũcs · Zbl 0493.46058
[37] Krylov, N.V.: An Analytic Approach to SPDEs. In: Stochastic Partial Differential Equations: Six Perspectives, Volume 64 of Math. Surveys Monogr., pp. 185-242. Amer. Math. Soc., Providence, RI (1999) · Zbl 0933.60073
[38] Krylov, N.V., Rozovskiĭ, B.L.: Stochastic evolution equations. In: Current Problems in Mathematics, Vol. 14 (Russian), pp. 71-147, 256. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow (1979)
[39] LeCrone, J.; Prüss, J.; Wilke, M., On quasilinear parabolic evolution equations in weighted \(L_p\)-spaces II, J. Evol. Equ., 14, 3, 509-533, 2014 · Zbl 1304.35382 · doi:10.1007/s00028-014-0226-6
[40] Liu, W.; Röckner, M., SPDE in Hilbert space with locally monotone coefficients, J. Funct. Anal., 259, 11, 2902-2922, 2010 · Zbl 1236.60064 · doi:10.1016/j.jfa.2010.05.012
[41] Liu, W.; Röckner, M., Stochastic Partial Differential Equations: an Introduction. Universitext, 2015, Cham: Springer, Cham · Zbl 1361.60002 · doi:10.1007/978-3-319-22354-4
[42] Marinelli, C.; Scarpa, L., A variational approach to dissipative SPDEs with singular drift, Ann. Probab., 46, 3, 1455-1497, 2018 · Zbl 1454.60097 · doi:10.1214/17-AOP1207
[43] Mehri, S.; Scheutzow, M., A stochastic Gronwall lemma and well-posedness of path-dependent SDEs driven by martingale noise, ALEA Lat. Am. J. Probab. Math. Stat., 18, 1, 193-209, 2021 · Zbl 1468.60074 · doi:10.30757/ALEA.v18-09
[44] Mikulevicius, R.; Rozovskii, B., Stochastic Navier-Stokes equations for turbulent flows, SIAM J. Math. Anal., 35, 5, 1250-1310, 2004 · Zbl 1062.60061 · doi:10.1137/S0036141002409167
[45] Neelima; Šiška, D., Coercivity condition for higher moment a priori estimates for nonlinear SPDEs and existence of a solution under local monotonicity, Stochastics, 92, 5, 684-715, 2020 · Zbl 1490.60190 · doi:10.1080/17442508.2019.1650043
[46] Pardoux, E.: Équations aux dérivées partielles stochastiques nonlinéares monotones: étude de solutions fortes de type Itô. PhD thesis, Université Paris-Orsay (1975)
[47] Portal, P.; Veraar, MC, Stochastic maximal regularity for rough time-dependent problems, Stoch. Partial Differ. Equ. Anal. Comput., 7, 4, 541-597, 2019 · Zbl 1431.60062
[48] Prüss, J.; Simonett, G.; Wilke, M., Critical spaces for quasilinear parabolic evolution equations and applications, J. Differ. Equ., 264, 3, 2028-2074, 2018 · Zbl 1377.35176 · doi:10.1016/j.jde.2017.10.010
[49] Prüss, J.; Wilke, M., Addendum to the paper “On quasilinear parabolic evolution equations in weighted \(L_p\)-spaces II”, J. Evol. Equ., 17, 4, 1381-1388, 2017 · Zbl 1387.35384 · doi:10.1007/s00028-017-0382-6
[50] Röckner, M., Shang, S., Zhang, T.: Well-posedness of stochastic partial differential equations with fully local monotone coefficients (2022). arXiv:2206.01107
[51] Röckner, M.; Zhang, X., Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity, Probab. Theory Relat. Fields, 145, 1-2, 211-267, 2009 · Zbl 1196.60118 · doi:10.1007/s00440-008-0167-5
[52] Röger, M.; Weber, H., Tightness for a stochastic Allen-Cahn equation, Stoch. Partial Differ. Equ. Anal. Comput., 1, 1, 175-203, 2013 · Zbl 1274.60207
[53] Rozovskiĭ, B.L.: Stochastic evolution systems, volume 35 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1990). Linear theory and applications to nonlinear filtering, Translated from the Russian by A. Yarkho · Zbl 0724.60070
[54] Scarpa, L.; Stefanelli, U., Doubly nonlinear stochastic evolution equations, Math. Models Methods Appl. Sci., 30, 5, 991-1031, 2020 · Zbl 1451.35268 · doi:10.1142/S0218202520500219
[55] Scarpa, L.; Stefanelli, U., Doubly nonlinear stochastic evolution equations II, Stoch. Partial Differ. Equ., Anal. Comput.,, 11, 1, 307-347, 2023 · Zbl 1518.35708
[56] Seeley, R., Interpolation in \(L^p\) with boundary conditions, Stud. Math., 44, 47-60, 1972 · Zbl 0237.46041 · doi:10.4064/sm-44-1-47-60
[57] Shardlow, T., Stochastic perturbations of the Allen-Cahn equation, Electron. J. Differ. Equ., 47, 19, 2000 · Zbl 0959.60047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.