×

The Morse index for manifolds with constant sectional curvature. (English) Zbl 1540.58015

Summary: We compute the Morse index of a critical submanifold of the energy functional on the loop space of a manifold with constant sectional curvature. The case of constant non-positive sectional curvature is a known result and the case of a sphere has been proved by W. Klingenberg [Q. J. Math., Oxf. II. Ser. 20, 11–31 (1969; Zbl 0177.26202); Lectures on closed geodesics. Springer, Cham (1978; Zbl 0397.58018)]. We adapt Klingenberg’s proof of the case of a sphere to the case of constant sectional curvature, to obtain the possible Morse indices of critical submanifolds of the energy functional.

MSC:

58J20 Index theory and related fixed-point theorems on manifolds
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
53C20 Global Riemannian geometry, including pinching
53C40 Global submanifolds

References:

[1] Duistermaat, JJ, On the Morse index in variational calculus, Adv. Math., 21, 173-195, 1976 · Zbl 0361.49026 · doi:10.1016/0001-8708(76)90074-8
[2] Gadea, PM; Muñoz, Masque J.; Mykytuk, IV, Analysis and Algebra on Differentiable Manifolds: A Workbook for students and teachers, 2012, London: Springer, London
[3] Hingston, N., Equivariant Morse theory and closed geodesics, J. Differ. Geom., 19, 85-116, 1984 · Zbl 0561.58007 · doi:10.4310/jdg/1214438424
[4] Kerman, E., Action selectors and Maslov class rigidity, Internat. Math. Res. Not., 2009, 23, 4395-4427, 2009 · Zbl 1183.53074
[5] Kerman, E.; Şirikçi, NI, Maslov class rigidity for Lagrangian submanifolds via Hofer’s geometry, Comment. Math. Helv., 85, 907-949, 2010 · Zbl 1198.53091 · doi:10.4171/cmh/214
[6] Klingenberg, W., The space of closed curves on a projective space, Quart. J. Math., 20, 1, 11-31, 1969 · Zbl 0177.26202 · doi:10.1093/qmath/20.1.11
[7] Klingenberg, W., Lectures on Closed Geodesics, 1978, Berlin, New York: Springer, Berlin, New York · Zbl 0397.58018 · doi:10.1007/978-3-642-61881-9
[8] Lee, JM, Riemannian Manifolds: An Introduction to Curvature, 1997, New York: Springer, New York · Zbl 0905.53001 · doi:10.1007/b98852
[9] Musso, M.; Pejsachowitz, J.; Portaluri, A., A Morse index theorem for perturbed geodesics on semi-Riemannian manifolds, Topol. Methods Nonlinear Anal., 25, 69-99, 2005 · Zbl 1101.58012 · doi:10.12775/TMNA.2005.004
[10] Piccione, P.; Tausk, DV, Morse index theorem in semi-Riemannian geometry, Topology, 41, 1123-1159, 2002 · Zbl 1040.53052 · doi:10.1016/S0040-9383(01)00030-1
[11] Sirikci ,N.I.: Obstructions to the existence of displaceable Lagrangian submanifolds. Ph.D. Thesis, University of Illinois at Urbana-Champaign, USA (2012)
[12] Şirikçi, NI, Displaceability of certain constant sectional curvature Lagrangian submanifolds, Results Math., 75, 158, 2020 · Zbl 1452.53069 · doi:10.1007/s00025-020-01279-0
[13] Viterbo, C., A new obstruction to embedding Lagrangian tori, Invent. Math., 100, 301-320, 1990 · Zbl 0727.58015 · doi:10.1007/BF01231188
[14] Waterstraat, N., A \(K\)-theoretic proof of the Morse index theorem in semi-Riemannian geometry, Proc. Am. Math. Soc., 140, 337-349, 2012 · Zbl 1241.58010 · doi:10.1090/S0002-9939-2011-10874-8
[15] Weber, J., Perturbed closed geodesics are periodic orbits: index and transversality, Mathematische Zeitschrift, 241, 45-81, 2002 · Zbl 1037.53060 · doi:10.1007/s002090100406
[16] Ziller, W., The free loop space of globally symmetric spaces, Inventiones Mathematicae, 41, 1-22, 1977 · Zbl 0338.58007 · doi:10.1007/BF01390161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.