×

On Bernstein type quantitative estimates for Ornstein non-inequalities. (English) Zbl 1540.42049

Summary: For the sequence of multi-indices \(\{\alpha_j\}_{j=1}^m\) and \(\beta\), we study the inequality \[ \|D^\beta f \|_{L_1(\mathbb{T}^d)} \leqslant K_N \sum_{j=1}^m \| D^{\alpha_j} f \|_{L_1(\mathbb{T}^d)}, \] where \(f\) is a trigonometric polynomial of degree at most \(N\) on the \(d\)-dimensional torus. Assuming some natural geometric property of the set \(\{\alpha_j\} \cup \{\beta\}\), we show that \[ K_N \geqslant C(\ln N)^\phi, \] where \(\phi < 1\) depends only on the set \(\{\alpha_j\} \cup \{\beta\}\).

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
42A55 Lacunary series of trigonometric and other functions; Riesz products
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
42B37 Harmonic analysis and PDEs
26D10 Inequalities involving derivatives and differential and integral operators
60E15 Inequalities; stochastic orderings

References:

[1] Akishev, G.: Estimates for the best approximation of functions of a class of logarithmic smoothness in a Lorentz space. (Russian) Tr. Inst. Mat. Mekh. 23 (2017), no. 3, 3-21. · doi:10.21538/0134-4889-2017-23-3-3-21
[2] Bonami, A., Latała, R., Nayar, P. and Tkocz, T.: Bounds on moments of weighted sums of finite Riesz products. J. Fourier Anal. Appl. 26 (2020), no. 6, article no. 84, 31 pp. · Zbl 1455.42003 · doi:10.1007/s00041-020-09800-3
[3] Conti, S., Faraco, D. and Maggi, F.: A new approach to counterexamples to L 1 estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex func-tions. Arch. Ration. Mech. Anal. 175 (2004), no. 2, 287-300. · Zbl 1080.49026 · doi:10.1007/s00205-004-0350-5
[4] Damek, E., Latała, R., Nayar, P. and Tkocz, T.: Two-sided bounds for L p -norms of combina-tions of products of independent random variables. Stochastic Process. Appl. 125 (2015), no. 4, 1688-1713. · Zbl 1321.60027 · doi:10.1016/j.spa.2014.11.012
[5] Fabes, E. B. and Rivière, N. M.: Singular integrals with mixed homogeneity. Studia Math. 27 (1966), no. 1, 19-38. · Zbl 0161.32403 · doi:10.4064/sm-27-1-19-38
[6] Kazaniecki, K., Stolyarov, D. M. and Wojciechowski, M.: Anisotropic Ornstein noninequalit-ies. Anal. PDE 10 (2017), no. 2, 351-366. · Zbl 1362.35013 · doi:10.2140/apde.2017.10.351
[7] Kazaniecki, K. and Wojciechowski, M.: Ornstein’s non-inequalities Riesz product approach. Preprint 2014, arXiv: 1406.7319.
[8] Kazaniecki, K. and Wojciechowski, M.: On the equivalence between the sets of the trigono-metric polynomials. Preprint 2014, arXiv: 1502.05994.
[9] Kirchheim, B. and Kristensen, J.: On rank one convex functions that are homogeneous of degree one. Arch. Ration. Mech. Anal. 221 (2016), no. 1, 527-558. · Zbl 1342.49015 · doi:10.1007/s00205-016-0967-1
[10] Latała, R.: L 1 -norm of combinations of products of independent random variables. Israel J. Math. 203 (2014), no. 1, 295-308. · Zbl 1350.60012 · doi:10.1007/s11856-014-1076-1
[11] Meyer, Y.: Endomorphismes des idéaux fermés de L 1 .G/, classes de Hardy et séries de Four-ier lacunaires. Ann. Sci. École Norm. Sup. (4) 1 (1968), no. 4, 499-580. · Zbl 0169.18001 · doi:10.24033/asens.1171
[12] Ornstein, D.: A non-equality for differential operators in the L 1 norm. Arch. Rational Mech. Anal. 11 (1962), 40-49. · Zbl 0106.29602 · doi:10.1007/BF00253928
[13] Pelczyński, A. and Wojciechowski, M.: Paley projections on anisotropic Sobolev spaces on tori. Proc. London Math. Soc. (3) 65 (1992), no. 2, 405-422. · Zbl 0767.46033 · doi:10.1112/plms/s3-65.2.405
[14] Riesz, F.: Über die Fourierkoeffizienten einer stetigen Funktion von beschränkter Schwankung. Math. Z. 2 (1918), no. 3-4, 312-315. · JFM 46.0452.02 · doi:10.1007/BF01199414
[15] Sherstneva, L. A.: Nikol’skii inequalities for trigonometric polynomials in Lorentz spaces. (Russian) Vestnik Moskov. Univ. Ser. 1. Mat. Mekh. 4 (1984), 75-79. · Zbl 0563.42001
[16] Wojciechowski, M.: On the strong type multiplier norms of rational functions in several vari-ables. Illinois J. Math. 42 (1998), no. 4, 582-600. · Zbl 0933.42005 · doi:10.1215/ijm/1255985462
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.