×

Nonwandering sets and special \(\alpha\)-limit sets of monotone maps on regular curves. (English) Zbl 1540.37024

Elaydi, Saber (ed.) et al., Advances in discrete dynamical systems, difference equations and applications. ICDEA 26, Sarajevo, Bosnia and Herzegovina, July 26–30, 2021. Proceedings of the 26th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 416, 339-362 (2023).
Summary: Let \(X\) be a regular curve and let \(f: X\rightarrow X\) be a monotone map. We show that \(\mathrm{AP} (f) = \mathrm{R}(f) = \varOmega (f)\), where \(\mathrm{AP}(f)\), \(\mathrm{R}(f)\) and \(\varOmega (f)\) are the sets of almost periodic points, recurrent points and nonwandering points of \(f\), respectively. On the other hand, we show that for every \(x\in X{\setminus} \mathrm{P}(f)\), the special \(\alpha\)-limit set \(s\alpha_f(x)\) is a minimal set, where \(P(f)\) is the set of periodic points of \(f\) and that \(s\alpha_f(x)\) is always closed, for every \(x\in X\). In addition, we prove that \(\mathrm{SA}(f) = \mathrm{R}(f)\), where \(\mathrm{SA}(f)\) denotes the special \(\alpha\)-limit set of \(f\). Further results related to the continuity of the limit maps are also obtained, we prove that the map \(\omega_f\) (resp. \(\alpha_f\), resp. \(\mathrm{s} \alpha_f)\) is continuous on \(X{\setminus} \mathrm{P}(f)\) (resp. \(X_{\infty}{\setminus} \mathrm{P}(f))\), where \(X_{\infty} = \underset{n\ge 0}{\cap}f^n(X)\).
For the entire collection see [Zbl 1531.37006].

MSC:

37B02 Dynamics in general topological spaces
37B45 Continua theory in dynamics
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics

References:

[1] Abdelli, H.: \( \omega \)-limit sets for monotone local dendrite maps. Chaos Solitons Fract. 71, 66-72 (2015) · Zbl 1352.37123
[2] Abdelli, H., Marzougui, H.: Invariant sets for monotone local dendrites. Int. J. Bifur. Chaos Appl. Sci. Engrg. 26, 1650150 (2016) · Zbl 1347.37051
[3] Abdelli, H.; Abouda, H.; Marzougui, H., Nonwandering points of monotone local dendrite maps revisited, Topol. Appl., 250, 61-73 (2018) · Zbl 1403.37023 · doi:10.1016/j.topol.2018.10.005
[4] Anielloa, ED; Steele, TH, The persistence of \(\omega \)-limit sets defined on compact spaces, J. Math. Anal. Appl., 413, 789-799 (2014) · Zbl 1317.37025 · doi:10.1016/j.jmaa.2013.12.026
[5] Askri, G., Naghmouchi, I.: On totally periodic \(\omega \)-limit sets in regular continua. Chaos Solitons Fract. 75, 91-95 (2015) · Zbl 1352.37048
[6] Balibrea, F.; Hric, R.; Snoha, L., Minimal sets on graphs and dendrites, Int. J. Bifur. Chaos Appl. Sci. Engrg., 13, 7, 1721-1725 (2003) · Zbl 1056.37050 · doi:10.1142/S0218127403007576
[7] Balibrea, F., Downarowicz, T., Hric, R., Snoha, L., Spitalsky, V.: Almost totally disconnected minimal systems. Ergod. Theory Dyn. Syst. 29, 737-766 (2009) · Zbl 1176.37008
[8] Balibrea, F., Guirao, J.L., Lampart, M.: A note on the definition of \(\alpha \)-limit set. Appl. Math. Inf. Sci. 7, 1929-1932 (2013)
[9] Balibrea, F., La Paz, C.: A characterization of the \(\omega \)-limit sets of interval maps. Acta Math. Hungar. 88(4), 291-300 (2000) · Zbl 0970.37029
[10] Balibrea, F., Dvorníková, G., Lampart, M., Oprocha, P.: On negative limit sets for one-dimensional dynamics. Nonlinear Anal. 75, 3262-3267 (2012) · Zbl 1242.37028
[11] Blanchard, P., Devaney, R.L., Look, D., Moreno Rocha, M., Seal, P., Siegmund, S., Uminsky, D.: Sierpinski carpets and gaskets as Julia sets of rational maps, pp. 97-119. European Mathematical Society, Zürich, In Dynamics on the Riemann Sphere (2006) · Zbl 1173.37046
[12] Block, L.S., Coppel, W.A.: Dynamics in one dimension. Lecture Notes in Mathematics, vol. 1513. Springer, Berlin (1992) · Zbl 0746.58007
[13] Coven, E.; Nitecki, Z., Non-wandering sets of the powers of maps of the interval, Ergod. Theory Dyn. Syst., 1, 9-31 (1981) · Zbl 0477.58031 · doi:10.1017/S0143385700001139
[14] Daghar, A.: On regular curve homeomorphisms without periodic points. J. Diff. Equ. Appl. (2021). doi:10.1080/10236198.2021.1912030 · Zbl 1523.37015
[15] Daghar, A.: Homeomorphisms of hereditarily locally connected continua. J. Dyn. Diff. Equ. (2021). doi:10.1007/s10884-021-10064-8
[16] Daghar, A., Marzougui, H.: On limit sets of monotone maps on regular curves. Qual. Theory Dyn. Syst. 20(3), Paper No. 89, 18 pp. (2021) · Zbl 1487.37016
[17] Daghar, A., Naghmouchi, I., Riahi, M.: Periodic points of regular curve homeomorphisms. Qual. Theory Dyn. Syst. 20(2), Paper No. 32, 10 pp. (2021) · Zbl 1470.37036
[18] Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 3rd edn. CRC Press, Boca Raton, FL (2022) · Zbl 1476.37001
[19] Foryś-Krawiec, M.; Hantáková, MJ; Oprocha, P., On the structure of \(\alpha \)-limit sets of backward trajectories for graph maps, Disc. Contin. Dyn. Syst., 42, 1435-1463 (2022) · Zbl 1491.37042 · doi:10.3934/dcds.2021159
[20] Grispolakis, J.; Tymchatyn, ED, \( \sigma \)-connectedness in hereditarily locally connected spaces, Trans. Am. Math. Soc., 253, 303-315 (1979) · Zbl 0413.54021
[21] Hantáková, J.; Roth, S., On backward attractors of interval maps, Nonlinearity, 34, 7415-7445 (2021) · doi:10.1088/1361-6544/ac23b6
[22] Hero, MW, Special \(\alpha \)-limit points for maps of the interval, Proc. Am. Math. Soc., 116, 1015-1022 (1992) · Zbl 0772.26006
[23] Hric, R.; Málek, M., Omega limit sets and distributional chaos on graphs, Topol. Appl., 153, 2469-2475 (2006) · Zbl 1099.37011 · doi:10.1016/j.topol.2005.09.007
[24] Jackson, S., Mance, B., Roth, S.: A non Borel special \(\alpha \)-limit set in the square. Ergod. Theory Dyn. Syst. 42, 2550-2560 (2022). doi:10.1017/etds.2021.68 · Zbl 07554511
[25] Kato, H., Topological entropy of monotone maps and confluent maps on regular curves, Topol. Proc., 28, 587-593 (2004) · Zbl 1093.54013
[26] Kato, H., Topological entropy of piecewise embedding maps on regular curues, Ergod. Theory Dyn. Syst., 26, 1115-1125 (2006) · Zbl 1101.37028 · doi:10.1017/S0143385706000174
[27] Kolyada, S., Misiurewicz, M., Snoha, L.: Special \(\alpha \)-limit sets. In: Dynamics: Topology and Numbers. Contemporary Mathematics American Mathematical Society, Providence, RI, vol. 744, pp. 157-173 (2020) · Zbl 1448.26007
[28] Kuratowski, K.: Topology, vol. 2. Academic Press, New-York (1968) · Zbl 1444.55001
[29] Lelek, A.: On the topology of curves, II. Fund. Math. 70, 131-138 (1971) · Zbl 0208.51101
[30] Mai, JH; Shao, S., The structure of graphs maps without periodic points, Topol. Appl., 154, 2714-2728 (2007) · Zbl 1118.37023 · doi:10.1016/j.topol.2007.05.005
[31] Mai, J.; Sun, T., The \(\omega \)-limit set of a graph map, Topol. Appl., 154, 2306-2311 (2007) · Zbl 1115.37044 · doi:10.1016/j.topol.2007.03.008
[32] Marzougui, H.; Naghmouchi, I., Minimal sets and orbit space for group actions on local dendrites, Math. Z., 293, 1057-1070 (2019) · Zbl 1436.37011 · doi:10.1007/s00209-018-2226-7
[33] Nadler, S.B.: Continuum Theory: An Introduction, (Monographs and Textbooks in Pure and Applied Mathematics), vol. 158. Marcel Dekker Inc, New York (1992) · Zbl 0757.54009
[34] Naghmouchi, I., Homeomorphisms of regular curves, J. Diff. Equ. Appl., 23, 1485-1490 (2017) · Zbl 1380.37086
[35] Naghmouchi, I., Dynamics of Homeomorphisms of regular curves, Colloq. Math., 162, 263-277 (2020) · Zbl 1492.37049 · doi:10.4064/cm7825-9-2019
[36] Naghmouchi, I., Dynamics of monotone graph, dendrite and dendroid maps, Int. J. Bifur. Chaos Appl. Sci. Engrg., 21, 3205-3215 (2011) · Zbl 1258.37049 · doi:10.1142/S0218127411030465
[37] Seidler, GT, The topological entropy of homeomorphisms on one-dimensional continua, Proc. Am. Math. Soc., 108, 1025-1030 (1990) · Zbl 0703.54021 · doi:10.1090/S0002-9939-1990-0946627-3
[38] Sun, T.; He, Q.; Liu, J.; Tao, C.; Xi, H., Non-wandering sets for dendrite maps, Qual. Theory Dyn. Syst., 14, 101-108 (2015) · Zbl 1376.37087 · doi:10.1007/s12346-014-0127-7
[39] Sun, T.; Xi, H.; Liang, H., Special \(\alpha \)-limit points and unilateral \(\gamma\) limit points for graph maps, Sci. China Math., 54, 2013-2018 (2011) · Zbl 1234.37035 · doi:10.1007/s11425-011-4254-1
[40] Sun, T.; Tang, Y.; Su, G.; Xi, H.; Qin, B., Special \(\alpha \)-limit points and \(\gamma \)-limit points of a dendrite map, Qual. Theory Dyn. Syst., 17, 245-257 (2018) · Zbl 1392.37013 · doi:10.1007/s12346-017-0225-4
[41] Tymchatyn, ED, Characterizations of continua in which connected subsets are arcwise connected, Trans. Am. Math. Soc., 222, 377-388 (1976) · Zbl 0333.54018 · doi:10.1090/S0002-9947-1976-0423318-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.