×

Ergodicity for higher dimension cylindrical cascades. (English) Zbl 1540.37010

The class of maps considered here are skew products of the form \((x,y)\mapsto (T_{\alpha}x,y+\phi(x))\) on \(\mathbb{T}^d\times\mathbb{R}^d\), where \(\phi\colon\mathbb{T}^d\to\mathbb{R}^d\) is integrable and \(T_{\alpha}\) is the rotation by \(\alpha\in\mathbb{T}^d\). By construction the product of the two Lebesgue measures is invariant, giving a family of infinite measure-preserving transformations parametrized for fixed \(d\) by \(\alpha\) and \(\phi\). The main result here is that if \(\alpha\) is Liouvillian then ergodicity of the resulting map is generic, and hence ergodicity is generic in the skew products over rigid rotations.

MSC:

37A05 Dynamical aspects of measure-preserving transformations
37A40 Nonsingular (and infinite-measure preserving) transformations
37A25 Ergodicity, mixing, rates of mixing
37B20 Notions of recurrence and recurrent behavior in topological dynamical systems
28D05 Measure-preserving transformations
Full Text: DOI

References:

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, American Mathematical Society, Providence, 1997. · Zbl 0882.28013
[2] D. V. A. B. Anosov Katok, New examples of ergodic diffeomorphisms of smooth manifolds, Uspehi Mat. Nauk., 25, 173-174 (1970) · Zbl 0203.56502
[3] J. Brémont, Ergodic non-abelian smooth extensions of an irrational rotation, J. Lond. Math. Soc., 81, 457-476 (2010) · Zbl 1189.37006 · doi:10.1112/jlms/jdp081
[4] N. Chevallier and J-P. Conze, Examples of recurrent or transient stationary walks in \(\mathbb{R}^d\) over a rotation of \(\mathbb{T}^2\), Ergodic Theory, Contemp. Math., 485, Amer. Math. Soc., Providence, RI, 2009, 71-84.
[5] P. Y. E. Cirilo Lima Pujals, Law of large numbers for certain cylinder flows, Ergodic Theory and Dynamical Systems, 34, 801-825 (2014) · Zbl 1350.37007 · doi:10.1017/etds.2012.165
[6] J-P. Conze, Ergodicité d’une transformation cylindrique, Bul. Soc. Math. France, 108, 441-456 (1980) · Zbl 0462.28013
[7] J-P. Conze, Recurrence, ergodicity and invariant measures for cocycles over a rotation, Ergodic Theory, Contemp. Math., 485, Amer. Math. Soc., Providence, RI, 2009, 45-70.
[8] A. Fathi and M. R. Herman, Existence de diffeomorphismes minimaux, Dynamical Systems I - Varsovie, Astérisque, 49, Société mathématique de France, 1997, 37-59. · Zbl 0374.58010
[9] B. R. Fayad, Weak mixing for reparametrized linear flows on the torus, Ergodic Theory & Dynam. Systems, 22, 187-201 (2002) · Zbl 1001.37006 · doi:10.1017/S0143385702000081
[10] W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ., Vol. 36, 1955. · Zbl 0067.15204
[11] A. B. Krygin, Examples of ergodic cylindrical cascades (Russian), Mat. Zametki, 16, 981-991 (1974) · Zbl 0318.54042 · doi:10.1007/BF01098447
[12] M. G. Nerurkar, On the construction of smooth ergodic skew-products, Ergodic Theory & Dynam. Systems, 8, 311-326 (1988) · Zbl 0662.58028 · doi:10.1017/S0143385700004454
[13] K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics, Macmillan Company of India, vol. 1, 1977. · Zbl 0421.28017
[14] K. Schmidt, A cylinder flow arising from irregularity of distribution, Compositio Math., 36 (1978), 225-232, http://www.numdam.org/item/?id = CM_1978__36_3_225_0. · Zbl 0388.28019
[15] E. A. Sidorov, Topological transitivity of cylindrical cascades, Mat. Zametki, 14, 441-452 (1973) · Zbl 0284.54025
[16] W. Sierpiński, Démonstration élémentaire du théorème sur la densité des ensembles, Fundamenta Mathematicae, 4, 167-171 (1923) · JFM 49.0147.01 · doi:10.4064/fm-4-1-167-171
[17] J.-C. Yoccoz, Sur la disparition de propriétés de type Denjoy-Koksma en dimension 2, C. R. Acad. Sci. Paris Sér. A-B, 291, A655-A658 (1980) · Zbl 0466.58024
[18] J.-C. Yoccoz, Petits diviseurs en dimension 1, Asterisque, 231 (1995) · Zbl 0836.30001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.