×

Identifiability of some space dependent coefficients in a wave equation of nonlinear acoustics. (English) Zbl 1540.35468

Summary: In this paper we prove uniqueness for some parameter identification problems for the Jordan-Moore-Gibson-Thompson (JMGT) equation, a third order in time quasilinear PDE in nonlinear acoustics. The coefficients to be recovered are the space dependent nonlinearity parameter, sound speed, and attenuation parameter, and the observation available is a single time trace of the acoustic pressure on the boundary. This is a setting relevant to several ultrasound based tomography methods. Our approach relies on the Inverse Function Theorem, which requires to prove that the forward operator is a differentiable isomorphism in appropriately chosen topologies and with an appropriate choice of the excitation.

MSC:

35R30 Inverse problems for PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
76Q05 Hydro- and aero-acoustics

References:

[1] S. G. J. Acosta Uhlmann Zhai, Nonlinear ultrasound imaging modeled by a Westervelt equation, SIAM J. Appl. Math., 82, 408-426 (2022) · Zbl 1486.35458 · doi:10.1137/21M1431813
[2] M. D. A. C. S. S. J. L. Alsaker Cárdenas Furuie Mueller, Complementary use of priors for pulmonary imaging with electrical impedance and ultrasound computed tomography, J. Comput. Appl. Math., 395, 113591 (2021) · Zbl 1466.92085 · doi:10.1016/j.cam.2021.113591
[3] A. R. Q. H. Bamberger Glowinski Tran, A domain decomposition method for the acoustic wave equation with discontinuous coefficients and grid change, SIAM J. Numer. Anal., 34, 603-639 (1997) · Zbl 0877.35066 · doi:10.1137/S0036142994261518
[4] L. Bjørnø, Characterization of biological media by means of their non-linearity, Ultrasonics24http://www.sciencedirect.com/science/article/pii/0041624X86901022
[5] M. Bongarti, S. Charoenphon and I. Lasiecka, Singular thermal relaxation limit for the Moore-Gibson-Thompson equation arising in propagation of acoustic waves, in Semigroups of Operators—Theory and Aapplications325
[6] F. M. Bucci Eller, The Cauchy-Dirichlet problem for the Moore-Gibson-Thompson equation, C. R. Math. Acad. Sci. Paris, 359, 881-903 (2021) · Zbl 1473.35084 · doi:10.5802/crmath.231
[7] V. I. O. E. Burov Gurinovich Rudenko Tagunov, Reconstruction of the spatial distribution of the nonlinearity parameter and sound velocity in acoustic nonlinear tomography, Acoustical Physics, 40, 816-823 (1994)
[8] C. A. Cain, Ultrasonic reflection mode imaging of the nonlinear parameter B/A: I. A theoretical basis, The Journal of the Acoustical Society of America, 80, 28-32 (1986) · doi:10.1121/1.394186
[9] K. Dines and A. Kak, Ultrasonic attenuation tomography of soft tissues, Ultrasonic Imaging1https://www.sciencedirect.com/science/article/pii/0161734679900038
[10] W. H. R. Dörfler Gerner Schnaubelt, Local well-posedness of a quasilinear wave equation, Applicable Analysis, 95, 2110-2123 (2016) · Zbl 1350.35128 · doi:10.1080/00036811.2015.1089236
[11] L. C. Evans, Partial Differential Equations · Zbl 0902.35002
[12] H. Gemmeke, T. Hopp, M. Zapf, C. Kaiser and N. V. Ruiter, 3d ultrasound computer tomography: Hardware setup, reconstruction methods and first clinical results, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment873https://www.sciencedirect.com/science/article/pii/S0168900217307593
[13] J. F. Greenleaf, S. A. Johnson, S. L. Lee, G. T. Hermant and E. H. Woo, Algebraic reconstruction of spatial distributions of acoustic absorption within tissue from their two-dimensional acoustic projections, in Acoustical Holography5
[14] P. Grisvard, Elliptic Problems in Nonsmooth Domains
[15] N. T. M. Ichida Sato Linzer, Imaging the nonlinear ultrasonic parameter of a medium, Ultrasonic Imaging, 5, 295-299 (1983) · doi:10.1177/016173468300500401
[16] A. Javaherian, F. Lucka and B. T. Cox, Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast, Inverse Problems36
[17] B. Y. Jin Kian, Recovery of the order of derivation for fractional diffusion equations in an unknown medium, SIAM J. Appl. Math., 82, 1045-1067 (2022) · Zbl 1492.35426 · doi:10.1137/21M1398264
[18] P. M. Jordan, Second-sound phenomena in inviscid, thermally relaxing gases, Discrete and Continuous Dynamical Systems-B, 19, 2189-2205 (2014) · Zbl 1302.76095 · doi:10.3934/dcdsb.2014.19.2189
[19] B. I. R. Kaltenbacher Lasiecka Marchand, Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equations arising in high intensity ultrasound, Control and Cybernetics, 40, 971-988 (2011) · Zbl 1318.35080
[20] B. I. M. K. Kaltenbacher Lasiecka Pospieszalska, Wellposedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound, Mathematical Models and Methods in the Applied Sciences M3AS, 22, 1250035 (2012) · Zbl 1257.35131 · doi:10.1142/S0218202512500352
[21] B. V. Kaltenbacher Nikolić, The inviscid limit of third-order linear and nonlinear acoustic equations, SIAM Journal on Applied Mathematics, 81, 1461-1482 (2021) · Zbl 1475.35282 · doi:10.1137/21M139390X
[22] B. V. Kaltenbacher Nikolić, Parabolic approximation of quasilinear wave equations with applications in nonlinear acoustics, SIAM Journal on Mathematical Analysis, 54, 1593-1622 (2022) · Zbl 1485.35296 · doi:10.1137/20M1380430
[23] B. V. Kaltenbacher Nikolić, Time-fractional Moore-Gibson-Thompson equations, Math. Models Methods Appl. Sci., 32, 965-1013 (2022) · Zbl 1491.35433 · doi:10.1142/S0218202522500221
[24] B. Kaltenbacher and W. Rundell, On the identification of the nonlinearity parameter in the Westervelt equation from boundary measurements, Inverse Problems and Imaging15http://aimsciences.org//article/id/614ee729-b72d-424c-a1bf-cc0b322fd9f6
[25] B. W. Kaltenbacher Rundell, On an inverse problem of nonlinear imaging with fractional damping, Mathematics of Computation, 91, 245-276 (2021) · Zbl 1479.35951 · doi:10.1090/mcom/3683
[26] B. Kaltenbacher and W. Rundell, Inverse Problems for Fractional Partial Differential Equations · Zbl 1536.35002
[27] B. Kaltenbacher and W. Rundell, Nonlinearity parameter imaging in the frequency domain, Inverse Problems and Imaging
[28] B. Kaltenbacher and W. Rundell, On the simultanenous reconstruction of two space dependent coefficients in acoustic nonlinearity parameter tomography, Inverse Problems39
[29] C. Li, N. Duric and L. Huang, Comparison of ultrasound attenuation tomography methods for breast imaging, in Medical Imaging 2008: Ultrasonic Imaging and Signal Processing6920
[30] F. Lucka, M. Pérez-Liva, B. E. Treeby and B. T. Cox, High resolution 3D ultrasonic breast imaging by time-domain full waveform inversion, Inverse Problems38
[31] R. T. J. R. Marchand McDevitt Triggiani, An abstract semigroup approach to the third-order Moore-Gibson-Thompson partial differential equation arising in high-intensity ultrasound: Structural decomposition, spectral analysis, exponential stability, Mathematical Methods in the Applied Sciences, 35, 1896-1929 (2012) · Zbl 1255.35047 · doi:10.1002/mma.1576
[32] F. W. Moore Gibson, Propagation of weak disturbances in a gas subject to relaxation effects, Journal of the Aerospace Sciences, 27, 117-127 (1960) · Zbl 0117.22104 · doi:10.2514/8.8418
[33] J. L. Mueller, D. A. C. Cárdenas and S. S. Furuie, A preclinical simulation study of ultrasoundtomography for pulmonary bedside monitoring, in Proceedings of the Second International Workshop on Medical Ultrasound Tomography (MUSTII)
[34] V. Nikolić and B. Said-Houari, Asymptotic behavior of nonlinear sound waves in inviscid media with thermal and molecular relaxation, Nonlinear Anal. Real World Appl.62 · Zbl 1478.35041
[35] V. Nikolić and B. Said-Houari, On the Jordan-Moore-Gibson-Thompson wave equation in hereditary fluids with quadratic gradient nonlinearity, J. Math. Fluid Mech.23 · Zbl 1458.35347
[36] A. R. H. O. M. Panfilova van Sloun Wijkstra Sapozhnikov Mischi, A review on B/A measurement methods with a clinical perspective, The Journal of the Acoustical Society of America, 149, 2200-2237 (2021) · doi:10.1121/10.0003627
[37] M. B. Pellicer Said-Houari, Wellposedness and decay rates for the Cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound, Applied Mathematics and Optimization, 80, 447-478 (2019) · Zbl 1425.35120 · doi:10.1007/s00245-017-9471-8
[38] M. J. L. J. M. E. B. T. B. E. Pérez-Liva Herraiz Udías Miller Cox Treeby, Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion, Journal of the Acoustical Society of America, 141, 1595-1604 (2017) · doi:10.1121/1.4976688
[39] R. Racke and B. Said-Houari, Global well-posedness of the Cauchy problem for the 3D Jordan-Moore-Gibson-Thompson equation, Commun. Contemp. Math.23 · Zbl 1476.35052
[40] S. B. T. Rajagopal Cox, 100mhz bandwidth planar laser-generated ultrasound source for hydrophone calibration, Ultrasonics, 108, 106218 (2020) · doi:10.1016/j.ultras.2020.106218
[41] P. Thompson, Compressible Fluid Dynamics · Zbl 0251.76001
[42] F. O. P. C. Varray Basset Tortoli Cachard, Extensions of nonlinear B/A parameter imaging methods for echo mode, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58, 1232-1244 (2011) · doi:10.1109/TUFFC.2011.1933
[43] M. Yamamoto and B. Kaltenbacher, An inverse source problem related to acoustic nonlinearity parameter imaging, in Time-Dependent Problems in Imaging and Parameter Identification · Zbl 1489.35292
[44] E. Zeidler, Applied Functional Analysis: Main Principles and Their Applications · Zbl 0834.46003
[45] D. X. X.-f. Zhang Chen Gong, Acoustic nonlinearity parameter tomography for biological tissues via parametric array from a circular piston source-theoretical analysis and computer simulations, The Journal of the Acoustical Society of America, 109, 1219-1225 (2001) · doi:10.1121/1.1344160
[46] D. X. S. Zhang Gong Ye, Acoustic nonlinearity parameter tomography for biological specimens via measurements of the second harmonics, The Journal of the Acoustical Society of America, 99, 2397-2402 (1996) · doi:10.1121/1.415427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.