×

Regularization of the volume integral operator of electromagnetic scattering. (English) Zbl 1540.35388

Summary: We consider the scattering of time-harmonic electromagnetic waves by a bounded, penetrable, homogeneous obstacle. This problem admits an equivalent formulation in terms of a strongly singular volume integral equation (VIE). In this paper, and for smooth interfaces, we construct a regularizer for the operator that describes the VIE, i.e., we give an explicit representation of an integral operator, which, applied to the VIE, transforms it into the form “identity plus a compact operator”. The employed strategy is inspired by the previous work [M. Costabel et al., C. R., Math., Acad. Sci. Paris 350, No. 3–4, 193–197 (2012; Zbl 1247.78011)].

MSC:

35Q61 Maxwell equations
78A45 Diffraction, scattering
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
45B05 Fredholm integral equations
35B65 Smoothness and regularity of solutions to PDEs
35R09 Integro-partial differential equations

Citations:

Zbl 1247.78011

References:

[1] N. V. Budko and A. B. Samokhin, “Spectrum of the volume integral operator of electromagnetic scattering”, SIAM J. Sci. Comput. 28:2 (2006), 682-700. Digital Object Identifier: 10.1137/050630660 Google Scholar: Lookup Link · Zbl 1121.78004 · doi:10.1137/050630660
[2] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd ed., Applied Mathematical Sciences 93, Springer, 1998. Digital Object Identifier: 10.1007/978-3-662-03537-5 Google Scholar: Lookup Link · Zbl 0893.35138 · doi:10.1007/978-3-662-03537-5
[3] M. Costabel and F. Le Louër, “Shape derivatives of boundary integral operators in electromagnetic scattering. Part I: Shape differentiability of pseudo-homogeneous boundary integral operators”, Integral Equations Operator Theory 72:4 (2012), 509-535. Digital Object Identifier: 10.1007/s00020-012-1954-z Google Scholar: Lookup Link · Zbl 1331.47045 · doi:10.1007/s00020-012-1954-z
[4] M. Costabel and F. Le Louër, “Shape derivatives of boundary integral operators in electromagnetic scattering. Part II: Application to scattering by a homogeneous dielectric obstacle”, Integral Equations Operator Theory 73:1 (2012), 17-48. Digital Object Identifier: 10.1007/s00020-012-1955-y Google Scholar: Lookup Link · Zbl 1263.78001 · doi:10.1007/s00020-012-1955-y
[5] M. Costabel and E. P. Stephan, “Strongly elliptic boundary integral equations for electromagnetic transmission problems”, Proc. Roy. Soc. Edinburgh Sect. A 109:3-4 (1988), 271-296. Digital Object Identifier: 10.1017/S0308210500027773 Google Scholar: Lookup Link · Zbl 0669.35032 · doi:10.1017/S0308210500027773
[6] M. Costabel, E. Darrigrand, and E. H. Koné, “Volume and surface integral equations for electromagnetic scattering by a dielectric body”, J. Comput. Appl. Math. 234:6 (2010), 1817-1825. Digital Object Identifier: 10.1016/j.cam.2009.08.033 Google Scholar: Lookup Link · Zbl 1192.78018 · doi:10.1016/j.cam.2009.08.033
[7] M. Costabel, E. Darrigrand, and H. Sakly, “The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body”, C. R. Math. Acad. Sci. Paris 350:3-4 (2012), 193-197. Digital Object Identifier: 10.1016/j.crma.2012.01.017 Google Scholar: Lookup Link · Zbl 1247.78011 · doi:10.1016/j.crma.2012.01.017
[8] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology, Spectral Theory and Applications 3, Springer, 1999.
[9] A. Kirsch, “An integral equation approach and the interior transmission problem for Maxwell’s equations”, Inverse Probl. Imaging 1:1 (2007), 159-179. Digital Object Identifier: 10.3934/ipi.2007.1.159 Google Scholar: Lookup Link · Zbl 1129.35080 · doi:10.3934/ipi.2007.1.159
[10] A. de La Bourdonnaye, “Décomposition de \[H_\text{div}^{-1/2}\left(\Gamma\right)\] et nature de l’opérateur de Steklov-Poincaré du problème extérieur de l’électromagnétisme”, C. R. Acad. Sci. Paris Sér. I Math. 316:4 (1993), 369-372. · Zbl 0767.35094
[11] R. C. MacCamy and E. Stephan, “Solution procedures for three-dimensional eddy current problems”, J. Math. Anal. Appl. 101:2 (1984), 348-379. Digital Object Identifier: 10.1016/0022-247X(84)90108-2 Google Scholar: Lookup Link · Zbl 0563.35054 · doi:10.1016/0022-247X(84)90108-2
[12] J. Markkanen, P. Ylä-Oijala, and S. Järvenpää, “On the spectrum and preconditioning of electromagnetic volume integral equations”, pp. 834-837 in 2016 URSI International Symposium on Electromagnetic Theory (EMTS), 2016.
[13] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. MathSciNet: MR1742312 · Zbl 0948.35001
[14] J.-C. Nédélec, Acoustic and electromagnetic equations, Applied Mathematical Sciences 144, Springer, 2001. Integral representations for harmonic problems. Digital Object Identifier: 10.1007/978-1-4757-4393-7 Google Scholar: Lookup Link · Zbl 0981.35002 · doi:10.1007/978-1-4757-4393-7
[15] S. A. Sauter and C. Schwab, Boundary element methods, Springer Series in Computational Mathematics 39, Springer, 2011. Digital Object Identifier: 10.1007/978-3-540-68093-2 Google Scholar: Lookup Link · Zbl 1215.65183 · doi:10.1007/978-3-540-68093-2
[16] G. P. Zouros and N. V. Budko, “Transverse electric scattering on inhomogeneous objects: spectrum of integral operator and preconditioning”, SIAM J. Sci. Comput. 34:3 (2012), B226-B246. Digital Object Identifier: 10.1137/110831568 Google Scholar: Lookup Link · Zbl 1246.78017 · doi:10.1137/110831568
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.