×

Limit of the blow-up solution for the inhomogeneous nonlinear Schrödinger equation. (English) Zbl 1540.35378

Summary: We study the \(H^1\) blow-up profile for the inhomogeneous nonlinear Schrödinger equation \[ i \partial_t u = - \Delta u-|x|^k |u|^{2\sigma} u,\quad (t,x) \in \mathbb{R} \times \mathbb{R}^N, \] where \(k \in (-1,2N-2)\) and \(N \geq 3\). We develop a new version of Gagliardo-Nirenberg inequality for \(\sigma \in [\frac{2+k}{N}, \frac{2+k}{N-2}]\) and \(k \in (-1,2N-2)\), and show that for the \(L^2\)-critical exponent \(\sigma = \frac{2+k}{N}, u(t)\) has no \(L^2\)-limit as \(t \to T^\ast\) when \(\| u(t) \|_{H^1}\) blows up at \(T^\ast \). Moreover, we investigate \(L^2\) concentration at the origin in the radial case. Additionally, if \(\frac{2+k}{N} < \sigma < \min \{2,\frac{2+k}{N-2}, \frac{2(1+k)+N}{2N}\}\), we show that there exists a unique \(u^\ast \in L^2 (\mathbb{R}^N)\) such that \(\Gamma (-t) u(t) \to \Gamma (-T^\ast) u^\ast\) in \(L^r (\mathbb{R}^N) (r\in [2,2^\ast))\) as \(t \to T^\ast\). Our results extend the work for \(k=0\) by F. Merle in earlier time.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
Full Text: DOI

References:

[1] Berge, L., Soliton stability versus collapse, Phys. Rev. E, 62, R3071-R3074 (2000)
[2] Caffarelli, L.; Kohn, R.; Nirenberg, L., First order interpolation inequalities with weights, Compos. Math., 53, 259-275 (1984) · Zbl 0563.46024
[3] Cao, D.; Han, P., Inhomogeneous critical nonlinear Schrödinger equations with a harmonic potential, J. Math. Phys., 51, Article 043505 pp. (2010) · Zbl 1310.35211
[4] Cazenave, T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, Vol. 10 (2003), New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, Providence, RI: New York University, Courant Institute of Mathematical Sciences, American Mathematical Society, Providence, RI New York · Zbl 1055.35003
[5] Chen, J. Q., On a class of nonlinear inhomogeneous Schrödinger equation, J. Appl. Math. Comput., 32, 237-253 (2010) · Zbl 1183.35097
[6] Chen, J. Q., On the inhomogeneous nonlinear Schrödinger equation with harmonic potential and unbounded coefficient, Czechoslovak Math. J., 60, 715-736 (2015) · Zbl 1224.35083
[7] Chen, J. Q.; Guo, B. L., Sharp global existence and blowing up results for inhomogeneous Schrödinger equations, Discrete Contin. Dyn. Syst., 8, 357-367 (2012) · Zbl 1151.35089
[8] Dinh, V. D., Blow up of \(H^1\) solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal., 174, 169-188 (2018) · Zbl 1388.35177
[9] Farah, L. G., Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation, J. Evol. Equ., 16, 193-208 (2016) · Zbl 1339.35287
[10] Farah, L. G.; Guzman, C. M., Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrödinger equation, J. Differential Equations, 262, 4175-4231 (2017) · Zbl 1362.35284
[11] Feng, B. H.; Cao, L. J.; Liu, J. Y., Existence of stable standing waves for the lee-huang-yang corrected dipolar gross-pitaevskii equation, Appl. Math. Lett., 115, 106952 (2021) · Zbl 1460.35153
[12] Feng, B. H.; Wang, Q. X., Strong instability of standing waves for the nonlinear schrödinger equation in trapped dipolar quantum gases, J. Dynam. Differential Equations., 4, 1989-2008 (2021) · Zbl 1504.35475
[13] Fibich, G.; Wang, X. P., Stability of solitary waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities, Physica D, 175, 96-108 (2003) · Zbl 1098.74614
[14] Genoud, F., An inhomogeneous, \( L^2\)-critical, nonlinear Schrödinger equation, Z. Anal. Anwend., 31, 283-290 (2012) · Zbl 1251.35146
[15] Genoud, F.; Stuart, C. A., Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves, Discrete Contin. Dyn. Syst., 21, 137-186 (2008) · Zbl 1154.35082
[16] Guzman, C. M., On well posedness for the inhomogeneous nonlinear Schrödinger equation, Nonlinear Anal. RWA, 37, 249-286 (2017) · Zbl 1375.35486
[17] Hmidi, T.; Keraani, S., Blow-up theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not. IMRN, 46, 2815-2828 (2005) · Zbl 1126.35067
[18] Holmer, J.; Roudenko, S., On blow-up solutions to the 3D cubic nonlinear Schrödinger equation, Appl. Math. Res. EXpress, 2007, Article a004 pp. (2007), 29 pages · Zbl 1130.35361
[19] Holmer, J.; Roudenko, S., A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., 282, 435-467 (2008) · Zbl 1155.35094
[20] Kenig, C. E.; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166, 645-675 (2006) · Zbl 1115.35125
[21] Kenig, C. E.; Merle, F., Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201, 147-212 (2008) · Zbl 1183.35202
[22] Liu, Y.; Wang, X. P.; Wang, K., Instability of standing waves of the Schrödinger equation with inhomogeneous nonlinearity, Trans. Amer. Math. Soc., 358, 2105-2122 (2006) · Zbl 1092.35105
[23] Merle, F., Limit of the solution of a nonlinear Schrödinger equation at the blow-up time, J. Funct. Anal., 84, 201-214 (1989) · Zbl 0681.35078
[24] Merle, F., \( L^2\) Concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84, 205-214 (1990) · Zbl 0722.35047
[25] Merle, F., Nonexistence of minimal blow-up solutions of equations \(i u_t = - \Delta u - k ( x ) | u |^{\frac{ 4}{ N}} u\) in \(\mathbb{R}^N\), Ann. Inst. H. Poincaré Phys. Théor., 64, 35-85 (1996) · Zbl 0846.35129
[26] Merle, F.; Raphaël, P., Blow up of the critical norm for some radial \(L^2\) super critical nonlinear Schrödinger equation, Am. J. Math., 130, 945-978 (2008) · Zbl 1188.35182
[27] Nawa, H.; Tsutsumi, M., On blow-up for the pseudo-conformally invariant nonlinear Schrödinger equation, Funkcial Ekvac., 32, 417-428 (1989) · Zbl 0703.35018
[28] Pang, P. Y.H.; Tang, H. Y.; Wang, Y. D., Blow-up solutions of inhomogeneous nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations, 26, 137-169 (2006) · Zbl 1091.35094
[29] Peng, C. M.; Zhao, D., Blow-up dynamics of \(L^2\)-critical inhomogeneous nonlinear Schrödinger equation, Math. Methods Appl. Sci., 41, 9408-9421 (2018) · Zbl 1406.35322
[30] Ramadan, A.; Stefanov, A. G., Existence and stability of solitary waves for the inhomogeneous NLS, Physica D, 414, Article 132691 pp. (2020) · Zbl 1490.35443
[31] Raphaël, P.; Szeftel, J., Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critial NLS, J. Am. Math. Soc., 24, 471-546 (2011) · Zbl 1218.35226
[32] Saanouni, T., Global well-posedness and instability of an inhomogeneous nonlinear Schrödinger equation, Mediterr. J. Math., 12, 387-417 (2015) · Zbl 1319.35243
[33] Shi, Q. H.; Peng, C. M.; Wang, Q. X., Blowup results for the fractional schrödinger equation without gauge invariance, Discrete Contin. Dyn. Syst. B, 27, 10, 6009-6022 (2022) · Zbl 1496.35368
[34] Strauss, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028
[35] Towers, I.; Malomed, B. A., Stable \(( 2 + 1 )\)-dimensional solitons in a layered medium with sign-alternating Kerr nonlinearity, J. Opt. Soc. Amer. B, 19, 537-543 (2002)
[36] Weinstein, M. I., Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87, 567-576 (1983) · Zbl 0527.35023
[37] Yang, H.; Zhu, S., Blow-up criteria for the inhomogeneous nonlinear Schrödinger equation, J. Inequal. Appl., 55, 1-8 (2014) · Zbl 1372.35290
[38] Zhu, S., Blow-up solutions for the inhomogeneous Schrödinger equation with \(L^2\) supercritical nonlinearity, J. Math. Anal. Appl., 409, 760-776 (2014) · Zbl 1306.35124
[39] Zhu, S.; Yang, H.; Zhang, J., Blow-up rate, mass concentration and asymptotic profile of blow-up solutions for the nonlinear inhomogeneous Schrödinger equation, Appl. Math. Comput., 242, 889-897 (2014) · Zbl 1334.35329
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.