×

Complex Weyl symbols of metaplectic operators: an elementary approach. (English) Zbl 1540.22024

The projective unitary representations of the symplectic group \(\mathrm{Sp}(n,\mathbb{R})\), called metaplectic representations or Weyl representations, play an important role in mathematics and quantum mechanics. The group \(\mathrm{Sp}(n,\mathbb{R})\) identified to a subgroup \(S\) of \(\mathrm{SU}(n,n)\) acts on the \((2n+1)\)-dimensional Heisenberg group \(H_n\) and on the non-degenerated unitary irreducible representations \(\varrho\) of \(H_n\) on the Fock space \(\mathcal{F}\). For any \(k\in S\) and \(\varrho\), the representations \(k \cdot \varrho\) and \(\varrho\) are unitarily equivalent, that is, there exists a unitary operator \(\sigma(k):\mathcal{F} \rightarrow \mathcal{F}\) such that \((k\cdot \varrho)(h) \sigma(k)=\sigma(k)\, \varrho(h)\), for any \(h\in H_n\). The map \(k\mapsto k\cdot \varrho\) is the metaplectic representation of \(\mathrm{Sp}(n,\mathbb{R})\). The author describes in full details the kernels of the operators \(\sigma(k)\) and their Berezin symbols. Explicit formulas are also given for the complex Weyl symbols \(W_0(\sigma(k))\) of the metaplectic operators \(\sigma(k)\) obtained using the correspondence \(W_0\) between the operators \(A:\mathcal{F}\rightarrow \mathcal{F}\) and functions on \(\mathbb{C}^n\), called complex Weyl calculus. Several applications of the obtained formulas are presented in the second part of the paper.

MSC:

22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
22E70 Applications of Lie groups to the sciences; explicit representations
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81S10 Geometry and quantization, symplectic methods
81R30 Coherent states

References:

[1] J. Arazy and H. Upmeier, Weyl calculus for complex and real symmetric domains, Harmonic analysis on complex homogeneous domains and Lie groups, Rome 2001, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., vol. 13, 2002, pp. 165-181. · Zbl 1150.43302
[2] D. Arnal, The *-exponential, Quantum Theories and Geometry (Dordrecht), Mathematical Physics Studies, vol. 10, Springer, 1988, pp. 23-51.
[3] V. Bargmann, Group representations on Hilbert spaces of analytic functions, Analytic methods in mathematical physics, (Sympos., Indiana Univ., Blooming-ton, Ind., 1968) (New York), Mathematical Physics Studies, Gordon and Breach, 1970, pp. 27-63. · Zbl 0222.43008
[4] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Stern-heimer, Deformation theory and quantization. I: Deformations of symplectic structures, Ann. Phys. 111 (1978), 61-110. · Zbl 0377.53024
[5] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Stern-heimer, Deformation theory and quantization. II: Physical applications, Ann. Phys. 111 (1978), 111-151. · Zbl 0377.53025
[6] F. Bayen and J.-M. Maillard, Star exponentials of the elements of the inho-mogeneous symplectic Lie algebra, Lett. Math. Phys. 6 (1982), 491-497. · Zbl 0516.58018
[7] F. A. Berezin, Quantization, Math. USSR Izv. 8 (1974), 1109-1165. · Zbl 0312.53049
[8] F. A. Berezin, Quantization in complex symmetric domains, Math. USSR Izv. 9 (1975), 341-379. · Zbl 0324.53049
[9] R. Berndt and R. Schmidt, Elements of the representation theory of the Jacobi group, Progress in Mathematics, no. 163, Birkhäuser Verlag, Basel, 1998. · Zbl 0931.11013
[10] B. Cahen, Quantization and Holomorphic Representations, Rend. Sem. Mat. Univ. Padova 129 (2013), 277-297. · Zbl 1272.22007
[11] B. Cahen, Stratonovich-Weyl correspondence for the diamond group, Riv. Mat. Univ. Parma 4 (2013), 197-213. · Zbl 1293.22003
[12] B. Cahen, Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group, Rend. Sem. Mat. Univ. Padova 136 (2016), 69-93. · Zbl 1359.22010
[13] B. Cahen, Weyl calculus on the Fock space and Stratonovich-Weyl correspon-dence for Heisenberg motion groups, Rend. Semin. Mat. Univ. Politec. Torino 76 (2018), 63-79. · Zbl 1440.22015
[14] B. Cahen, The complex Weyl calculus as a Stratonovich-Weyl correspondence for the diamond group, Tsukuba J. Math. 44 (2020), 121-137. · Zbl 1475.22019
[15] B. Cahen, A note on the harmonic representation of SU(p,q), Nihonkai Math. J. 33 (2022), 61-79. · Zbl 1537.22038
[16] M. Combescure and D. Robert, Quadratic quantum Hamiltonians revisited, Cubo 8 (2006), 61-86. · Zbl 1105.35092
[17] M. Combescure and D. Robert, Coherent states and applications in math-ematical physics, Theoretical and Mathematical Physics, Springer, Dordrecht, 2012. · Zbl 1243.81004
[18] M. A. de Gosson, On the Weyl representation of metaplectic operators, Lett. Math. Phys. 8 (2005), 129-142. · Zbl 1115.81048
[19] J. Dereziński and M. Karczmarczyk, On the Weyl symbol of the resolvent of the harmonic oscillator, Comm. Partial Differ. Equations 42 (2017), 1537-1548. · Zbl 1391.35117
[20] J. Dereziński and M. Karczmarczyk, Quantization of Gaussians, Analysis as a tool in mathematical physics (New York), Oper. Theory: Adv. Appl., vol. 276, Birkhäuser, 2020, pp. 277-304. · Zbl 1518.47072
[21] B. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, Prince-ton, 1989. · Zbl 0682.43001
[22] C. Fronsdal, Some ideas about quantization, Rep. Math. Phys. 15 (1979), 111-145. · Zbl 0418.58011
[23] J. M. Gracia-Bondìa, Generalized Moyal quantization on homogeneous sym-plectic spaces, Deformation theory and quantum groups with applications to mathematical physics, Amherst, MA, 1990 (Providence, RI), Contemp. Math., vol. 134, Amer. Math. Soc, 1992, pp. 93-114. · Zbl 0788.58024
[24] J. M. Gracia-Bondìa, J. C. Vàrilly, and W. Schempp, The Moyal repre-sentation of quantum mechanics and special function theory, Acta Appl. Math. 18 (1990), 225-250. · Zbl 0703.33015
[25] J. Hilgert, A note on Howe’s oscillator semigroup, Ann. Inst. Fourier (Greno-ble) 39 (1989), 663-668. · Zbl 0674.47029
[26] L. Hörmander, The analysis of linear partial differential operators, Vol. 3, Springer-Verlag, Berlin, Heidelberg, New-York, 1985. · Zbl 0601.35001
[27] L. Hörmander, Symplectic classification of quadratic forms, and general Mehler formulas, Math. Z. 219 (1995), 413-449. · Zbl 0829.35150
[28] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil Representations and Harmonic Polynomials, Inventiones Math. 44 (1978), 1-47. · Zbl 0375.22009
[29] S. Luo, Polar decomposition and isometric integral transforms, Int. Transf. Spec. Funct. 9 (2000), 313-324. · Zbl 0969.43008
[30] K-H. Neeb, Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, vol. 28, Walter de Gruyter, Berlin, New-York, 2000.
[31] R. L. Stratonovich, On distributions in representation space, Soviet Physics, Soviet Physics. JETP 4 (1957), 891-898. · Zbl 0082.19302
[32] M. E. Taylor, Noncommutative Harmonic Analysis, vol. 22, American Math-ematical Society, Providence, Rhode Island, 1986. · Zbl 0604.43001
[33] A. Unterberger and H. Upmeier, Berezin transform and invariant differen-tial operators, Commun. Math. Phys. 163 (1994), 563-597. · Zbl 0843.32019
[34] A. Voros, An Algebra of Pseudo differential operators and the Asymptotics of Quantum Mechanics, J. Funct. Anal. 29 (1978), 104-132. · Zbl 0386.47031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.