×

Closed subgroups of compact groups having open Chabauty spaces. (English) Zbl 1540.22009

For a locally compact group \(G\), denote by \(\mathcal{SUB}(G)\) the set of all closed subgroups of \(G\) endowed with the Chabauty topology, which is compact and Hausdorff. If \(H\) is a closed subgroup of \(G\), then the Chabauty topology of \(\mathcal{SUB}(H)\) coincides with the subspace topology of the Chabauty topology of \(\mathcal{SUB}(G)\) and \(\mathcal{SUB}(H)\) is a closed subspace of \(\mathcal{SUB}(G)\).
There are known cases when \(\mathcal{SUB}(H)\) is open in \(\mathcal{SUB}(G)\), but for example when \(G=\mathbb Z\) and \(H=\{0\}\) this does not occur. Let \(\mathcal T(G)\) be the family of all closed subgroups \(H\) of \(G\) such that \(\mathcal{SUB}(H)\) is open in \(\mathcal{SUB}(G)\). Clearly, \(G\in\mathcal T(G)\) and as an example \(\mathcal T(\mathbb Z)=\{\mathbb Z\}\).
This paper is focused on the family \(\mathcal T(G)\) when \(G\) is a compact group. For a closed subgroup \(H\) of \(G\), denote by \(N_G(H)\) the normalizer of \(H\) in \(G\), by \(G_0\) the connected component of \(1\) in \(G\) and let \(\mathcal M_G:=\{H\in\mathcal{SUB}(G):G_0\subseteq N_G(H)\}\). Moreover, let \begin{align*} &\mathcal{SUB}_n(G):=\{H\in\mathcal{SUB}(G): N\ \text{normal in}\ G\}\supseteq\mathcal N(G):=\{N\in\mathcal{SUB}_n(G):G/N\ \text{Lie group}\},\\ &\mathcal{SUB}_o(G):=\{H\in\mathcal{SUB}(G):H\ \text{open in}\ G\}. \end{align*}
Some of the main results of the present paper are the following:
if \(H\in\mathcal{SUB}(G)\), then \(H\in\mathcal T(G)\) if and only of \(N_G(H)\) is open in \(G\) and \(N_G(H)/H\) is a Lie group;
\(\mathcal T(G)=\{NH:N\in\mathcal{N}(G),H\in\mathcal M_G\}\) and the closure of \(\mathcal T(G)\) in \(\mathcal{SUB}(G)\) is \(\mathcal M_G\);
if \(G\) is abelian, then \(\mathcal T(G)=\mathcal N(G)\) and \(\mathcal T(G)\) is dense in \(\mathcal{SUB}(G)\).

Moreover, some characterizations in the case of Lie groups are given:
\(\mathcal T(G)=\mathcal M_G\) if and only if \(G\) is a Lie group;
\(\mathcal T(G)=\mathcal{SUB}(G)\) if and only if \(G\) is a Lie group with \(G_0\) central;
if \(G\) is a connected Lie group, then \(\mathcal T(G)=\mathcal{SUB}_n(G)\) and \(\mathcal T(G)\) is a closed in \(\mathcal{SUB}(G)\).

While in the totally disconnected case:
\(G\) is totally disconnected if and only if \(\mathcal T(G)=\mathcal{SUB}_o(G)\) and \(\mathcal T(G)\) is dense in \(\mathcal{SUB}(G)\);
\(G\) is topologically isomorphic to the group of \(p\)-adic integers \(\mathbb J_p\) for some prime \(p\) if and only if \(\mathcal T(G)=\mathcal{SUB}(G)\setminus \{\{1\}\}\) and \(\mathcal T(G)\) is an open dense subset of \(\mathcal{SUB}(G)\).

MSC:

22C05 Compact groups
22D05 General properties and structure of locally compact groups
54B20 Hyperspaces in general topology
54H11 Topological groups (topological aspects)
Full Text: DOI

References:

[1] Armacost, DL, The structure of locally compact Abelian groups, Pure and Applied Mathematics: A Series of Monographs and Textbooks (1981), New York: Dekker, New York · Zbl 0509.22003
[2] Bourbaki N, Éléments de mathématique, intégration, chapitres 7-8 (2007) (Springer-Verlag) · Zbl 1182.28001
[3] Bredon G E, Introduction to Compact Transformation Groups (1972) (New York: Academic Press) · Zbl 0246.57017
[4] Fisher, S.; Gartside, P., On the space of subgroups of a compact group I, Topology Appl., 156, 862-871 (2009) · Zbl 1169.22003 · doi:10.1016/j.topol.2008.11.005
[5] Gartside, P.; Smith, M., Classifying spaces of subgroups of profinite groups, J. Group Theory, 13, 315-336 (2010) · Zbl 1200.20022
[6] Hamrouni, H.; Jlali, Z., Locally compact groups with compact open subgroups having open Chabauty spaces, J. Lie Theory, 30, 001-008 (2020) · Zbl 1439.22011
[7] Hamrouni, H.; Jlali, Z., A characterization of totally disconnected compactly ruled groups, Proc. Indian Acad. Sci. Math. Sci., 131, 1-10 (2021) · Zbl 1490.22006 · doi:10.1007/s12044-020-00601-8
[8] Hamrouni, H.; Kammoun, Y., Finitely generated subgroups and Chabauty topology in totally disconnected locally compact groups, J. Group Theory, 26, 83-99 (2023) · Zbl 1519.22002
[9] Hamrouni H and Kammoun Y, Finitely generated subgroups and Chabauty topology in totally disconnected locally compact groups, J. Group Theory26 (2023) 83-99 · Zbl 1519.22002
[10] Herfort W, Hofmann K H and Russo F G, Periodic locally compact groups, A Study of a Class of Totally Disconnected Topological Groups, Volume 71 of De Gruyter Studies in Mathematics (2019) (Berlin: De Gruyter) · Zbl 1423.22001
[11] Hewitt E and Ross K A, Abstract harmonic analysis I, Grundlehren der Mathematischen Wissenschaften 115 (1963) (Berlin: Springer) · Zbl 0115.10603
[12] Hofmann, KH; Morris, SA; Stroppel, M., Locally compact groups, residual Lie groups, and varieties generated by Lie groups, Topol. Appl., 71, 63-91 (1996) · Zbl 0858.22005 · doi:10.1016/0166-8641(95)00068-2
[13] Hofmann, KH; Willis, GA, Continuity characterizing totally disconnected locally compact groups, J. Lie Theory, 25, 1-7 (2015) · Zbl 1317.22004
[14] Lee, DH, Supplements for the identity component in locally compact groups, Math. Z., 104, 28-49 (1968) · Zbl 0185.07104 · doi:10.1007/BF01114916
[15] Morris, SA; Oates-Williams, S.; Thompson, HB, Locally compact groups with every closed subgroup of finite index, Bull. Lond. Math. Soc., 2, 2, 359-361 (1990) · Zbl 0729.22006 · doi:10.1112/blms/22.4.359
[16] Hofmann, KH; Russo, FG, The probability that \(x\) and \(y\) commute in a compact group, Math. Proc. Camb. Philos. Soc., 153, 557-571 (2012) · Zbl 1261.22006 · doi:10.1017/S0305004112000308
[17] Hamrouni, H.; Kadri, B., Locally compact groups with totally disconnected space of subgroups, J. Group Theory, 22, 119-132 (2019) · Zbl 1442.54029 · doi:10.1515/jgth-2018-0034
[18] Protasov, IV, Topological properties of the lattice of subgroups, Ukrainian Math. J., 32, 236-240 (1980) · Zbl 0456.22002 · doi:10.1007/BF01089759
[19] Scheiderer C, Untergruppenverbinde topologischer Gruppen, Doctoral Dissertation (1985) (Universitat Erlangen-Nürnberg) · Zbl 0581.22007
[20] Scheiderer, C., Topologies on the subgroup lattice of a compact group, Topol. Appl., 23, 183-191 (1986) · Zbl 0599.22008 · doi:10.1016/0166-8641(86)90040-4
[21] Schochetman, I., Nets of subgroups and amenability, Proc. Am. Math. Soc., 29, 397-403 (1971) · Zbl 0215.40601 · doi:10.1090/S0002-9939-1971-0281837-0
[22] Schmidt R, Subgroup lattices of groups, Expositions in Mathematics 14 (1994) (de Gruyter) pp. xv+572 · Zbl 0843.20003
[23] Stroppel M, Locally compact groups, EMS Textbooks in Mathematics (2006) (Zürich: European Mathematical Society (EMS)) · Zbl 1102.22005
[24] Suzuki M, Structure of a Group and the Structure of its Lattice of Subgroups (1956) (Berlin: Springer Verlag) · Zbl 0070.25406
[25] von Neumann, J., Die Einführung analytischer parameter in topologischen gruppen, Ann. Math., 34, 170-190 (1933) · Zbl 0006.30003 · doi:10.2307/1968347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.