×

Some enumeration relating to intervals in posets. (English) Zbl 1540.06002

Cunningham, Gabriel (ed.) et al., Polytopes and discrete geometry. AMS special session, Northeastern University, Boston, MA, USA, April 21–22, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 764, 149-155 (2021).
Summary: Given a finite ranked poset \(P\) another, \(\mathcal{J}(P)\), is obtained by considering its poset of intervals. Iteration of this construction yields a sequence of ranked posets. The functions giving the number of elements of given rank in \(\mathcal{J}^k(P)\) is studied by utilizing the notion of parity representation of posets. It is shown that these functions are given by polynomials in \(2^k\).
For the entire collection see [Zbl 1467.52001].

MSC:

06A07 Combinatorics of partially ordered sets
05A15 Exact enumeration problems, generating functions
Full Text: DOI

References:

[1] Andreev, E. M., Convex polyhedra in Loba\v{c}evski\u{\i} spaces, Mat. Sb. (N.S.), 81 (123), 445-478 (1970) · Zbl 0194.23202
[2] Andrews, George E.; Lawrence, Jim, Binary partitions and binary partition polytopes, Aequationes Math., 91, 5, 859-869 (2017) · Zbl 1390.05017 · doi:10.1007/s00010-017-0493-8
[3] Beck, Matthias; Robins, Sinai, Computing the continuous discretely, Undergraduate Texts in Mathematics, xx+285 pp. (2015), Springer, New York · Zbl 1339.52002 · doi:10.1007/978-1-4939-2969-6
[4] Dobbins, Michael Gene, Antiprismlessness, or: reducing combinatorial equivalence to projective equivalence in realizability problems for polytopes, Discrete Comput. Geom., 57, 4, 966-984 (2017) · Zbl 1368.52008 · doi:10.1007/s00454-017-9874-y
[5] Fukuda, Komei; Weibel, Christophe, \(f\)-vectors of Minkowski additions of convex polytopes, Discrete Comput. Geom., 37, 4, 503-516 (2007) · Zbl 1125.52009 · doi:10.1007/s00454-007-1310-2
[6] Gr\"{u}nbaum, Branko, Convex polytopes, Graduate Texts in Mathematics 221, xvi+468 pp. (2003), Springer-Verlag, New York · Zbl 1024.52001 · doi:10.1007/978-1-4613-0019-9
[7] Joji\'{c}, Du\v{s}ko, The cd-index of the poset of intervals and \(E_t\)-construction, Rocky Mountain J. Math., 40, 2, 527-541 (2010) · Zbl 1192.06003 · doi:10.1216/RMJ-2010-40-2-527
[8] Lawrence, Jim, Dual-antiprisms and partitions of powers of 2 into powers of 2, Discrete Comput. Geom., 61, 3, 465-478 (2019) · Zbl 1407.05017 · doi:10.1007/s00454-019-00070-5
[9] J. Lawrence, Parity representations of posets, (In preparation.) · Zbl 1472.52013
[10] Lindstr\"{o}m, Bernt, On the realization of convex polytopes, Euler’s formula and M\"{o}bius functions, Aequationes Math., 6, 235-240 (1971) · Zbl 0294.52006 · doi:10.1007/BF01819757
[11] Paffenholz, Andreas; Ziegler, G\"{u}nter M., The \(E_t\)-construction for lattices, spheres and polytopes, Discrete Comput. Geom., 32, 4, 601-621 (2004) · Zbl 1109.52009 · doi:10.1007/s00454-004-1140-4
[12] Schramm, Oded, How to cage an egg, Invent. Math., 107, 3, 543-560 (1992) · Zbl 0726.52003 · doi:10.1007/BF01231901
[13] Schulte, E., Analogues of Steinitz’s theorem about noninscribable polytopes. Intuitive geometry, Si\'{o}fok, 1985, Colloq. Math. Soc. J\'{a}nos Bolyai 48, 503-516 (1987), North-Holland, Amsterdam · Zbl 0631.52006
[14] Stanley, Richard P., Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics 49, xiv+626 pp. (2012), Cambridge University Press, Cambridge · Zbl 1247.05003
[15] Ziegler, G\"{u}nter M., Convex polytopes: extremal constructions and \(f\)-vector shapes. Geometric combinatorics, IAS/Park City Math. Ser. 13, 617-691 (2007), Amer. Math. Soc., Providence, RI · Zbl 1134.52018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.