×

Quasi-static approximation in the study of compact stars. (English) Zbl 1539.83119

Summary: This paper is devoted to the evaluation of the quasi-static approximation of the hydro-dynamics of compact stars in the energy-momentum squared gravity. This theory allows for the presence of a scalar created by the stress-energy tensor as \(T^2 = T_{\gamma\lambda} T^{\gamma\lambda}\) in the generalized action of the theory. For this purpose, we investigate the anisotropic and dissipative fluid composition in axial and reflection symmetric geometry. To grasp the idea of the proposed approximation, a collection of invariant velocities is defined. As a result, the evolution of compact stars is presented in this approximation by examining the associated generalized field, dynamical, and scalar equations to elicit all possible outcomes. The generalized heat-transport equation is evaluated to study the thermodynamics of the chosen system. In the context of energy-momentum squared gravity, the role of structure scalars in the dynamics of the compact stars is also investigated. Furthermore, the proposed approximation is used to determine the significance of kinematical variables, generalized heat-fluxes, and structure scalars for the evolution of self-gravitating compact stars.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI

References:

[1] Pietrobon, D.; Balbi, A.; Marinucci, D., Phys. Rev. D, 74, Article 043524 pp., 2006
[2] Giannantonio, T., Phys. Rev. D, 74, Article 063520 pp., 2006
[3] Riess, A. G., Astrophys. J., 659, 98, 2007
[4] Nojiri, S.; Odintsov, S. D., Int. J. Geom. Methods Mod. Phys., 4, 115, 2007 · Zbl 1112.83047
[5] K. Bamba, S. Nojiri, S.D. Odintsov, 2013. arXiv preprint arXiv:1302.4831.
[6] Yousaf, Z.; Bamba, K.; Bhatti, M. Z., Phys. Rev. D, 93, Article 124048 pp., 2016
[7] Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S. D., Astrophys. Space Sci., 342, 155, 2012 · Zbl 1314.83037
[8] Yousaf, Z.; Bhatti, M. Z., Mon. Not. R. Astron. Soc., 458, 1785, 2016
[9] Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K., Phys. Rep., 692, 1, 2017 · Zbl 1370.83084
[10] Capozziello, S.; De Laurentis, M., Phys. Rep., 509, 167, 2011
[11] Harko, T.; Lobo, F. S.; Nojiri, S.; Odintsov, S. D., Phys. Rev. D, 84, Article 024020 pp., 2011
[12] Alvarenga, F. G.; Houndjo, M. J.S.; Monwanou, A. V.; Orou, J. B.C., J. Mod. Phys., 4, 27253, 2013
[13] Moraes, P. H.R. S.; Sahoo, P. K., Phys. Rev. D, 96, Article 044038 pp., 2017
[14] Chakraborty, S., Gen. Relativity Gravitation, 45, 2039, 2013 · Zbl 1277.83076
[15] Houndjo, M., Internat. J. Modern Phys. D, 21, 01, Article 1250003 pp., 2012 · Zbl 1263.83132
[16] Singh, C. P.; Kumar, P., Eur. Phys. J. C, 74, 1, 2014
[17] Yousaf, Z.; Bamba, K.; Bhatti, M. Z.; Farwa, U., Eur. Phys. J. A, 54, 122, 2018
[18] Yousaf, Z.; Bhatti, M. Z.; Farwa, U., Classical Quantum Gravity, 34, Article 145002 pp., 2017 · Zbl 1373.83091
[19] Yousaf, Z.; Bhatti, M. Z.; Farwa, U., Eur. Phys. J. C, 77, 359, 2017
[20] Katırcı, N.; Kavuk, M., Eur. Phys. J. Plus, 129, 1, 2014
[21] Akarsu, O.; Katırcı, N.; Kumar, S., Phys. Rev. D, 97, Article 024011 pp., 2018
[22] Roshan, M.; Shojai, F., Phys. Rev. D, 94, Article 044002 pp., 2016
[23] Board, C. V.R.; Barrow, J. D., Phys. Rev. D, 96, Article 123517 pp., 2017
[24] Chen, C.-Y.; Chen, P., Phys. Rev. D, 101, Article 064021 pp., 2020
[25] Nazari, E.; Sarvi, F.; Roshan, M., Phys. Rev. D, 102, Article 064016 pp., 2020
[26] Akarsu, O.; Barrow, J. D.; Board, C. V.R.; Uzun, N. M.; Vazquez, J. A., Eur. Phys. J. C, 79, 1, 2019
[27] Faria, M. C.F.; Martins, C. J.A. P.; Chiti, F.; Silva, B. S.A., Astron. Astrophys., 625, A127, 2019
[28] Herrera, L.; González, G. A.; Pachón, L. A.; Rueda, J. A., Class. Quantum Gravit., 23, 2395, 2006 · Zbl 1102.83011
[29] Herrera, L.; Di Prisco, A.; Ibáñez, J.; Ospino, J., Phys. Rev. D, 87, Article 024014 pp., 2013
[30] Herrera, L.; Di Prisco, A.; Ibáñez, J.; Ospino, J., Phys. Rev. D, 89, Article 084034 pp., 2014
[31] Sahoo, P. K.; Mishra, B.; Reddy, G. C., Eur. Phys. J. Plus, 129, 1, 2014
[32] Bhatti, M. Z.; Yousaf, Z.; Yousaf, M., Phys. Dark Universe, 28, Article 100501 pp., 2020
[33] Yousaf, Z.; Bhatti, M. Z.; Farwa, U., Ann. Physics, 433, Article 168601 pp., 2021 · Zbl 1531.83141
[34] Capozziello, S.; De Laurentis, M.; Farinelli, R.; Odintsov, S. D., Phys. Rev. D, 93, Article 023501 pp., 2016
[35] Astashenok, A.; Capozziello, S.; Odintsov, S. D., J. Cosmol. Astropart. Phys., 2015, 001, 2015
[36] Nashed, G. G.L.; Capozziello, S., Eur. Phys. J. C, 81, 1, 2021
[37] Astashenok, A. V.; Capozziello, S.; Odintsov, S. D., J. Cosmol. Astropart. Phys., 2013, 040, 2013
[38] Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J., Internat. J. Modern Phys. D, 25, Article 1650036 pp., 2016 · Zbl 1339.83021
[39] Felipe, R. G.; Fune, E. L.; Paret, D. M.; Martínez, A. P., J. Phys., 39, Article 045006 pp., 2012
[40] Herrera, L.; Ospino, J.; Di Prisco, A.; Fuenmayor, E.; Troconis, O., Phys. Rev. D, 79, Article 064025 pp., 2009
[41] Kippenhahn, R.; Weigert, A.; Weiss, A., 1990, vol. 192, Springer
[42] Romero-Muñoz, M.; Dagdug, L.; Chacón-Acosta, G., (J. Phys. Conf. Ser., 582, 2015, IOP Publishing), Article 012044 pp.
[43] Tolman, R. C., Phys. Rev., 35, 904, 1930 · JFM 56.0744.02
[44] Chandrasekhar, S., Modern Phys. Lett. A, 12, 114, 1964 · Zbl 0116.21704
[45] Chandrasekhar, S., Mon. Not. R. Astron. Soc., 95, 207, 1935 · Zbl 0011.08503
[46] Akarsu, O.; Barrow, J. D.; Çıkıntoğlu, S.; Eksi, K. Y.; Katirci, N., Phys. Rev. D, 97, Article 124017 pp., 2018
[47] Nari, N.; Roshan, M., Phys. Rev. D, 98, Article 024031 pp., 2018
[48] Costa, G.; Fogli, G., Symmetries and Group Theory in Particle Physics: An Introduction to Space-Time and Internal Symmetries, vol. 823, 2012, Springer Science & Business Media · Zbl 1243.81005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.