×

Dynamics of perturbative Karmarkar collapse of radiating star in \(f(\mathcal{R}, \mathcal{T})\) gravity. (English) Zbl 1539.83054

Summary: The significance of the shear-free condition on the perturbative collapse of a radiating anisotropic fluid with Karmarkar condition in the formalism of \(f(\mathcal{R}, \mathcal{T})\) gravity is analyzed in this manuscript. The gravitational collapse of a spherically symmetric radiating object proceeds from an initially static regime satisfying the time dependent Karmarkar condition and is further established by a huge amount of energy dissipation in the form of heat flux. A perturbation approach is applied to get the collapse equation and the gravitational nature of our model is entirely governed by the Karmarkar condition and its boundary condition in the scheme of \(f(\mathcal{R}, \mathcal{T})\) gravity, where \(\mathcal{R}\) is the Ricci scalar and \(\mathcal{T}\) is the trace of the energy momentum tensor. Vaidya’s time-like hypersurface is smoothly matched with the interior solution, which further entitles to examine the physical viability of the spherically symmetric source. Furthermore, a viable linear \(f(\mathcal{R}, \mathcal{T})\) model is chosen to achieve the exact solution for an anisotropic radiating fluid model. Stability tests are demonstrated, indicating that our model is well-behaved. Furthermore, general relativity results have been obtained by simply taking the coupling parameter \(\chi\) to zero.

MSC:

83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI

References:

[1] Riess, A. G., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J., 116, 1009, 1998
[2] Perlmutter, S., Measurements of \(\Omega\) and \(\Lambda\) from 42 high-redshift supernovae, Astrophys. J., 517, 565, 1999 · Zbl 1368.85002
[3] de Bernardis, P., A flat universe from high-resolution maps of the cosmic microwave background radiation, Nature, 404, 955, 2000
[4] Perlmutter, S., Supernovae, dark energy, and the accelerating universe, Phys. Today, 56, 53, 2003
[5] Sharif, M.; Zubair, M., Effects of electromagnetic field on the dynamics of bianchi type \(V I_0\) universe with anisotropic dark energy, Internat. J. Modern Phys. D, 19, 1957, 2010 · Zbl 1204.83116
[6] Sharif, M.; Zubair, M., Dynamics of bianchi I universe with magnetized anisotropic dark energy, Astrophys. Space Sci., 330, 399, 2010 · Zbl 1203.83075
[7] De Felice, A.; Tsujikawa, S., \( f ( R )\) Theories, Living Rev. Relativ., 13, 3, 2010 · Zbl 1215.83005
[8] Ferraro, R.; Fiorini, F., Modified teleparallel gravity: inflation without an inflaton, Phys. Rev. D, 75, Article 084031 pp., 2007
[9] Sharif, M.; Shamir, M. F., Exact solutions of bianchi-type I and v spacetimes in the \(f ( R )\) theory of gravity, Classical Quantum Gravity, 26, Article 235020 pp., 2009 · Zbl 1181.83168
[10] Sharif, M.; Shamir, M. F., Energy distribution in \(f ( R )\) gravity, Gen. Relativ. Gravit., 42, 1557, 2010 · Zbl 1195.83034
[11] Shamir, M. F.; Ahmad, M., Emerging anisotropic compact stars in \(f ( G , T )\) gravity, Eur. Phys. J. C, 77, 1, 2017
[12] Capozziello, S.; Lambiase, G., Cosmological curvature acceleration, Eur. Phys. J. Spec. Top., 230, 2123, 2021
[13] Oikonomou, V. K., Unifying inflation with early and late dark energy epochs in axion \(f ( R )\) gravity, Phys. Rev. D, 103, Article 044036 pp., 2021
[14] Nojiri, S.; Odintsov, S. D., Modified \(f ( R )\) gravity unifying \(R^m\) inflation with the \(\Lambda\) CDM epoch, Phys. Rev. D, 77, Article 026007 pp., 2008
[15] Nojiri, S.; Odintsov, S. D., Unifying inflation with \(\Lambda\) CDM epoch in modified \(f ( R )\) gravity consistent with solar system tests, Phys. Lett. B, 657, 238, 2007
[16] Mustafa, G., Embedding class one solutions of anisotropic fluid spheres in modified \(f ( G )\) gravity, Eur. Phys. J. Plus, 136, 166, 2021
[17] Bhatti, M. Z., Structure scalars with charged dissipative systems in \(f ( G , T )\) gravity, Chin. J. Phys., 73, 658, 2021 · Zbl 07837819
[18] Shamir, M. F.; Zia, S., Physical attributes of anisotropic compact stars in \(f ( R , G )\) gravity, Eur. Phys. J. C., 77, 448, 2017
[19] Maurya, S. K., Physical attributes of anisotropic compact stars in \(f ( G , T )\) gravity, Chin. J. Phys., 31, Article 100753 pp., 2021
[20] Yousaf, Z., Measure of complexity in self-gravitating systems using structure scalars, New Astr., 84, Article 101541 pp., 2021
[21] Nojiri, S.; Odintsov, S. D., Measure of complexity in self-gravitating systems using structure scalars, Phys. Rep., 505, 59, 2011
[22] Harko, T., \( f ( R , T )\) Gravity, Phys. Rev. D, 84, Article 024020 pp., 2011
[23] Gamonal, M., Slow-roll inflation in \(f ( R , T )\) gravity and a modified starobinsky-like inflationary model, Phys. Dark Universe, 31, Article 100768 pp., 2021
[24] Moraes, P. H.R. S.; Sahoo, P. K., Modeling wormholes in \(f ( R , T )\) gravity, Phys. Rev. D, 96, Article 044038 pp., 2017
[25] Sharif, M.; Zubair, M., Thermodynamics in \(f ( R , T )\) theory of gravity, J. Cosmol. Astropart. Phys., 2012, 028, 2012
[26] Sharif, M.; Yousaf, Z., Dynamical analysis of self-gravitating stars in \(f ( R , T )\) gravity, Astrophys. Space Sci., 354, 471, 2014
[27] Sharif, M.; Zubair, M., Energy conditions constraints and stability of power law solutions in \(f ( R , T )\) gravity, J. Phys. Soc. Jap., 82, Article 014002 pp., 2012
[28] Noureen, I.; Zubair, M., Dynamical instability and expansion-free condition in \(f ( R , T )\) gravity, Eur. Phys. J. C, 75, 21, 2015
[29] Sharif, M.; Zubair, M., Cosmology of holographic and new agegraphic \(f ( R , T )\) models, J. Phys. Soci. Japan, 82, Article 064001 pp., 2013
[30] Fisher, S. B.; Carlson, E. D., Reexamining \(f ( R , T )\) gravity, Phys. Rev. D, 100, Article 064059 pp., 2019
[31] Houndjo, M., Reconstruction of \(f ( R , T )\) gravity describing matter dominated and accelerated phases, Internat. J. Modern Phys. D, 21, Article 1250003 pp., 2012 · Zbl 1263.83132
[32] Zubair, M., Exact wormholes solutions without exotic matter in \(f ( R , T )\) gravity, Int. J. Geom. Methods Mod. Phys., 16, Article 1950046 pp., 2019 · Zbl 1426.83039
[33] Zubair, M., Spherically symmetric traversable wormholes in \(f ( R , T )\) gravity, Int. J. Geom. Methods Mod. Phys., 16, Article 1950147 pp., 2019 · Zbl 07801939
[34] Yousaf, Z., Spherical relativistic vacuum core models in a \(\Lambda \)-dominated era, Eur. Phys. J. Plus, 132, 71, 2017
[35] Yousaf, Z., Ltb geometry with tilted and nontilted congruences in \(f ( R , T )\) gravity, Astrophys. and Spa. Sci., 363, 68, 2017 · Zbl 1371.83164
[36] Sharif, M.; Siddiqa, A., Study of charged stellar structures in \(f ( R , T )\) gravity, Modern Phys. Lett. A, 32, Article 1750151 pp., 2017 · Zbl 1372.83067
[37] Moraes, P. H.R. S., Stellar equilibrium configurations of compact stars in \(f ( R , T )\) theory of gravity, Astropart. Phys., 06, 005, 2016
[38] Shamir, M. F., Locally rotationally symmetric bianchi type I cosmology in \(f ( R , T )\) gravity, Eur. Phys. J. C, 75, 354, 2015
[39] Das, A., Compact stars in \(f ( R , T )\) gravity, Eur. Phys. J. C, 76, 654, 2016
[40] Chandrasekhar, S., The pressure in the interior of a star, Mon. Not. R. Astron. Soc., 96, 644, 1936 · Zbl 0014.23504
[41] Oppenheimer, J. R.; Snyder, H., On continued gravitational contraction, Phys. Rev., 56, 455, 1939 · Zbl 0022.28104
[42] Datt, S., About a class of solutions to the gravitational equations of relativity, Zs. F. Phys., 108, 314, 1938
[43] Kippenhahn, R., Stellar Structure and Evolution, 1990, Springer Verlag · Zbl 1254.85001
[44] Hansen, C. J.; Kawaler, S. D., An Overview of Stellar Evolution, 1994, Stellar Interiors
[45] Herrera, L., Spherically symmetric dissipative anisotropic fluids: A general study, Phys. Rev. D, 69, Article 084026 pp., 2004
[46] Bowers, R. L.; Liang, E. P.T., Anisotropic spheres in general relativity, The Astrophys. J., 188, 657, 1974
[47] Vaidya, P. C., The gravitational field of a radiating star, Proc. Indian Acad. Sci. A, 33, 264, 1951 · Zbl 0044.42202
[48] Santos, N. O., Non-adiabatic radiating collapse, Mon. Not. R. Astro. Soc, 216, 403, 1985
[49] Herrera, L., Anisotropic fluids and conformal motions in general relativity, J. Math. Phys., 25, 3274, 1984 · Zbl 0548.76113
[50] Herrera, L., Dynamical instability for non-adiabatic spherical collapse, Mon. Not. R. Astro. Soc., 237, 257, 1989 · Zbl 0668.76158
[51] Herrera, L., Shearing expansion-free spherical anisotropic fluid evolution, Phys. Rev. D, 78, Article 084026 pp., 2008
[52] Herrera, L.; Ponce de Leon, J., Confined gravitational fields produced by anisotropic fluids, J. Math. Phys., 26, 2847, 1985 · Zbl 0585.76194
[53] Ivanov, B. V., On general spherical fluid collapse, Int. J. Mod. Phys. D., 25, Article 1650049 pp., 2016 · Zbl 1341.83007
[54] Gómez, G. C., Density profile evolution during prestellar core collapse: collapse starts at the large scale, Mon. Not. Royal Soci., 502, 4, 2021
[55] Sharif, M.; Aslam, M., Compact objects by gravitational decoupling in \(f ( R )\) gravity, Eurp. Phys. J. C, 81, 641, 2021
[56] Sharif, M.; Gul, M. Z., Dynamics of charged anisotropic spherical collapse in energy-momentum squared gravity, Chin. J. Phys., 71, 365, 2021 · Zbl 07835689
[57] Kolassis, C. A., Friedmann-like collapsing model of a radiating sphere with heat flow, Astrophys. J., 327, 755, 1988
[58] Bonnor, W. B., Radiating spherical collapse, Phys. Rep., 181, 269, 1989
[59] Govender, M., A causal model of radiating stellar collapse, Classical Quantum Gravity, 15, 323, 1998 · Zbl 0909.53060
[60] Herrera, L., Expansion-free evolving spheres must have inhomogeneous energy density distributions, Phys. Rev. D, 79, Article 087505 pp., 2009
[61] Herrera, L., On the stability of the shear-free condition, Gen. Relat. Gravit., 42, 1585, 2010 · Zbl 1197.83078
[62] Herrera, L., Dynamical instability and the expansion-free condition, Gen. Relat. Gravit., 44, 1143, 2012 · Zbl 1241.83023
[63] Zubair, M., A generic embedding class-I model via Karmarkar condition in gravity, Advances in Astro, 2021, 2021
[64] Abbas, G.; Nazar, H., Stellar shear-free gravitational collapse with karmarkar condition in \(f ( R )\) gravity, Internat. J. Modern Phys. A, 34, Article 1950220 pp., 2019
[65] Sharif, M.; Yousaf, Z., Dynamical analysis of self-gravitating stars in \(f ( R , T )\) gravity, Astrophys. Space Sci., 354, 471, 2014
[66] Herrera, L.; Santos, N. O., Local anisotropy in self-gravitating systems, Phys. Rep., 286, 53, 1997
[67] Maurya, S. K.; Ortiz, F. T., A gravitational decoupling MGD model in modified \(f ( R , T )\) gravity theory, Ann. Physics, 414, Article 168070 pp., 2020 · Zbl 1433.83031
[68] Guha, S.; Ghosh, U., Dynamical conditions and causal transport of dissipative spherical collapse in \(f ( R , T )\) gravity, Eur. Phys. J. Plus, 136, 460, 2021
[69] Rosa, João Luís, Junction conditions and thin shells in perfect-fluid \(f ( R , T )\) gravity, Phys. Rev. D, 103, Article 104069 pp., 2021
[70] Singh, Ksh. N., Exploring physical properties of compact stars in \(f ( R , T )\)-gravity: An embedding approach, Chinese Phys. C, 44, Article 105106 pp., 2020
[71] Noreen, I.; Zubair, M., Dynamical instability and expansion-free condition in \(f ( R , T )\) gravity, Eur. Phys. J. C., 75, 62, 2015
[72] Govender, G., A perturbative approach to the time-dependent karmarkar condition, Eurp. Phys. J. C, 81, 2, 2021
[73] Herrera, L., Shear-free axially symmetric dissipative fluids, Phys. Rev. D, 89, Article 127502 pp., 2014
[74] Herrera, L., On the stability of the shear-free condition, Gen. Relativity Gravitation, 42, 1585, 2010 · Zbl 1197.83078
[75] Azizi, T., Wormhole geometries in \(f ( R , T )\) gravity, Internat. J. Theoret. Phys., 52, 3486, 2013 · Zbl 1274.83107
[76] Karmarkar, K. R., Gravitational metrics of spherical symmetry and class one, Proc. Indian Acad. Sci., 27, 56, 1948
[77] Herrera, L., On the role of density inhomogeneity and local anisotropy in the fate of spherical collapse, Phys. Lett. A, 237, 113, 1998
[78] Misner, C. W.; Sharp, D. M., Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. D, 136, 571, 1964 · Zbl 0129.41102
[79] Lima, N. A.; Liddle, A. R., Linear perturbations in viable \(f ( R )\) theories, Phys. Rev. D, 88, Article 043521 pp., 2013
[80] Liddle, A. R., Information criteria for astrophysical model selection, MNRAS Lett., 377, 74, 2007
[81] Ospino, J.; Nunez, L. A., Karmarkar scalar condition, Eur. Phys. J. C., 80, 166, 2020
[82] Jaryal, S. C., Radiating-collapsing models satisfying karmarkar condition, Eur. Phys. J. C., 80, 683, 2020
[83] Hansraj, S.; Moodly, L., Stellar modelling of isotropic Einstein-Maxwell perfect fluid spheres of embedding class one, Eur. Phys. J. C., 80, 496, 2020
[84] Naidu, N. F., Radiating star with a time-dependent Karmarkar condition, Eur. Phys. J.C., 78, 48, 2018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.