×

An investigation of \(\mathcal{PT}\)-symmetry breaking in tight-binding chains. (English) Zbl 1539.82040

Summary: We consider non-Hermitian \(\mathcal{PT}\)-symmetric tight-binding chains where gain/loss optical potentials of equal magnitudes \(\pm i \gamma\) are arbitrarily distributed over all sites. The main focus is on the threshold \(\gamma_c\) beyond which \(\mathcal{PT}\)-symmetry is broken. This threshold generically falls off as a power of the chain length, whose exponent depends on the configuration of optical potentials, ranging between 1 (for balanced periodic chains) and 2 (for unbalanced periodic chains, where each half of the chain experiences a non-zero mean potential). For random sequences of optical potentials with zero average and finite variance, the threshold is itself a random variable, whose mean value decays with exponent 3/2 and whose fluctuations have a universal distribution. The chains yielding the most robust \(\mathcal{PT}\)-symmetric phase, i.e. the highest threshold at fixed chain length, are obtained by exact enumeration up to 48 sites. This optimal threshold exhibits an irregular dependence on the chain length, presumably decaying asymptotically with exponent 1, up to logarithmic corrections.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators

References:

[1] Ashida, Y.; Gong, Z.; Ueda, M., Adv. Phys., 69, 249-435 (2020) · doi:10.1080/00018732.2021.1876991
[2] Bender, C. M.; Boettcher, S., Phys. Rev. Lett., 80, 5243-5246 (1998) · Zbl 0947.81018 · doi:10.1103/physrevlett.80.5243
[3] Bender, C. M.; Brody, D. C.; Jones, H. F., Phys. Rev. Lett., 89 (2002) · Zbl 1267.81234 · doi:10.1103/physrevlett.89.270401
[4] Zinn-Justin, J.; Jentschura, U. D., J. Phys. A: Math. Theor., 43 (2010) · Zbl 1201.81058 · doi:10.1088/1751-8113/43/42/425301
[5] Bender, C. M., Rep. Prog. Phys., 70, 947-1018 (2007) · doi:10.1088/0034-4885/70/6/r03
[6] Bender, C. M., Europhys. News, 47, 17-20 (2016) · doi:10.1051/epn/2016201
[7] El-Ganainy, R.; Makris, K. G.; Khajavikhan, M.; Musslimani, Z. H.; Rotter, S.; Christodoulides, D. N., Nat. Phys., 14, 11-19 (2018) · doi:10.1038/nphys4323
[8] Bendix, O.; Fleischmann, R.; Kottos, T.; Shapiro, B., Phys. Rev. Lett., 103 (2009) · Zbl 1254.81042 · doi:10.1103/physrevlett.103.030402
[9] Jin, L.; Song, Z., Phys. Rev. A, 80 (2009) · Zbl 1255.81081 · doi:10.1103/physreva.80.052107
[10] Joglekar, Y. N.; Scott, D.; Babbey, M.; Saxena, A., Phys. Rev. A, 82 (2010) · doi:10.1103/physreva.82.030103
[11] Joglekar, Y. N.; Barnett, J. L., Phys. Rev. A, 84 (2011) · doi:10.1103/physreva.84.024103
[12] Mejía-Cortés, C.; Molina, M. I., Phys. Rev. A, 91 (2015) · doi:10.1103/physreva.91.033815
[13] Molina, M. I., Phys. Rev. A, 92 (2015) · doi:10.1103/physreva.92.063813
[14] Harter, A. K.; Onanga, F. A.; Joglekar, Y. N., Sci. Rep., 8, 44 (2018) · doi:10.1038/s41598-017-18589-z
[15] Ortega, A.; Stegmann, T.; Benet, L.; Larralde, H., J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.81367 · doi:10.1088/1751-8121/abb513
[16] Longhi, S., Opt. Lett., 39, 1697-1700 (2014) · doi:10.1364/ol.39.001697
[17] Elenewski, J. E.; Chen, H., Phys. Rev. B, 90 (2014) · doi:10.1103/physrevb.90.085104
[18] Garmon, S.; Gianfreda, M.; Hatano, N., Phys. Rev. A, 92 (2015) · doi:10.1103/physreva.92.022125
[19] Zhang, L. L.; Gong, W. J., Phys. Rev. A, 95 (2017) · doi:10.1103/physreva.95.062123
[20] Crisanti, A.; Paladin, G.; Vulpiani, A., Products of Random Matrices in Statistical Physics (1992), Berlin: Springer, Berlin · Zbl 0784.58003
[21] Luck, J. M., Systèmes Désordonnés Unidimensionnels (1992), Saclay: Collection Aléa, Saclay
[22] Pendry, J. B., Adv. Phys., 43, 461 (1994) · doi:10.1080/00018739400101515
[23] Comtet, A.; Texier, C.; Tourigny, Y., J. Phys. A: Math. Theor., 46 (2013) · Zbl 1271.82009 · doi:10.1088/1751-8113/46/25/254003
[24] Comtet, A.; Tourigny, Y.; Schehr, G.; Altland, A.; Fyodorov, Y. V.; O’Connell, N.; Cugliandolo, L. F., Impurity models and products of random matrices, Stochastic Processes and Random Matrices (2017), Oxford: Oxford University Press, Oxford · Zbl 1390.82028
[25] Frisch, H. L.; Lloyd, S. P., Phys. Rev., 120, 1175-1189 (1960) · Zbl 0093.23202 · doi:10.1103/physrev.120.1175
[26] Halperin, B. I., Phys. Rev., 139, A104-A117 (1965) · doi:10.1103/physrev.139.a104
[27] Derrida, B.; Gardner, E., J. Phys. France, 45, 1283-1295 (1984) · doi:10.1051/jphys:019840045080128300
[28] Izrailev, F. M.; Ruffo, S.; Tessieri, L., J. Phys. A: Math. Gen., 31, 5263-5270 (1998) · Zbl 0939.82025 · doi:10.1088/0305-4470/31/23/008
[29] Comtet, A.; Luck, J-M; Texier, C.; Tourigny, Y., J. Stat. Phys., 150, 13-65 (2013) · Zbl 1259.82049 · doi:10.1007/s10955-012-0674-8
[30] Schomerus, H.; Titov, M., Phys. Rev. E, 66 (2002) · doi:10.1103/physreve.66.066207
[31] Ramola, K.; Texier, C., J. Stat. Phys., 157, 497-514 (2014) · Zbl 1301.35123 · doi:10.1007/s10955-014-1082-z
[32] Fyodorov, Y. V.; Le Doussal, P.; Rosso, A.; Texier, C., Ann. Phys., 397, 1-64 (2018) · Zbl 1397.82062 · doi:10.1016/j.aop.2018.07.029
[33] Godrèche, C.; Luck, J. M., Phys. Rev. B, 45, 176-185 (1992) · doi:10.1103/physrevb.45.176
[34] Luck, J. M., Europhys. Lett., 24, 359-364 (1993) · doi:10.1209/0295-5075/24/5/007
[35] Queffélec, M., Substitution Dynamical Systems, Spectral Analysis (2010), New York: Springer, New York · Zbl 1225.11001
[36] Baake, M.; Grimm, U., Aperiodic Order, vol 1 (2013), Cambridge: Cambridge University Press, Cambridge · Zbl 1295.37001
[37] Krapivsky, P. L.; Luck, J. M.; Mallick, K., J. Phys. A: Math. Theor., 48 (2015) · Zbl 1330.81140 · doi:10.1088/1751-8113/48/47/475301
[38] Luck, J. M., J. Phys. A: Math. Theor., 49 (2016) · Zbl 1343.81076 · doi:10.1088/1751-8113/49/11/115303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.