×

Phase change and solute mixing in multicomponent metal additive manufacturing: a new numerical approach. (English) Zbl 1539.76240

Summary: Creation of new alloys through in-situ alloying in additive manufacturing is being actively explored to improve the properties and performance of manufactured parts. Multiphysics models are often used to investigate the underlying physics controlling AM processes using high-fidelity simulations of individual powder particle melting within the meltpool. In this paper, we present a novel multiphysics-multiphase model for simulating multicomponent powder beds during the AM process. A convection-diffusion formulation for component mass fraction, in conjunction with the Navier-Stokes equations and enthalpy form of the energy equation, enable us to predict the phase evolution in multicomponent beds and the dispersion of solute metals in the melt pool during the process. A non-equilibrium phase diagram (NEPD) model that incorporates the associated phase diagram is introduced to obtain the mass fraction in both solid and liquid phases as well as local temperature and liquid fraction by efficiently solving a set of nonlinear equations locally at each computational cell. This work introduces a numerical method for multicomponent Al-Zr binary material system for light-weight aluminum alloys, specifically demonstrating its efficacy and accuracy for eutectic solidification of this multicomponent.

MSC:

76T20 Suspensions
76M10 Finite element methods applied to problems in fluid mechanics

Software:

PANDAT
Full Text: DOI

References:

[1] Zhakeyev, Adilet; Wang, Panfeng; Zhang, Li; Shu, Wenmiao; Wang, Huizhi; Xuan, Jin, Additive manufacturing: unlocking the evolution of energy materials. Adv. Sci., 10 (2017)
[2] Yap, Chor Yen; Chua, Chee Kai; Dong, Zhi Li; Liu, Zhong Hong; Zhang, Dan Qing; Loh, Loong Ee; Sing, Swee Leong, Review of selective laser melting: Materials and applications. Appl. Phys. Rev., 4 (2015)
[3] Singh, Ambrish; Kapil, Sajan; Das, Manas, A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition. Addit. Manuf. (2020)
[4] Aramian, Atefeh; Razavi, Seyed Mohammad Javad; Sadeghian, Zohreh; Berto, Filippo, A review of additive manufacturing of cermets. Addit. Manuf. (2020)
[5] Chang, Tammy; Mukherjee, Saptarshi; Watkins, Nicholas N.; Stobbe, David M.; Mays, Owen; Baluyot, Emer V.; Pascall, Andrew J.; Tringe, Joseph W., In-situ monitoring for liquid metal jetting using a millimeter-wave impedance diagnostic. Sci. Rep., 1, 1-9 (2020)
[6] Ziaee, Mohsen; Crane, Nathan B., Binder jetting: A review of process, materials, and methods. Addit. Manuf., 781-801 (2019)
[7] Altan, Taylan; Lilly, Blaine; Yen, Y. C., Manufacturing of dies and molds. CIRP Ann., 2, 404-422 (2001)
[8] Galy, Cassiopée; Le Guen, Emilie; Lacoste, Eric; Arvieu, Corinne, Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences. Addit. Manuf., 165-175 (2018)
[9] Thijs, Lore; Kempen, Karolien; Kruth, Jean-Pierre; Van Humbeeck, Jan, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater., 5, 1809-1819 (2013)
[10] Louvis, Eleftherios; Fox, Peter; Sutcliffe, Christopher J., Selective laser melting of aluminium components. J. Mater Process. Technol., 2, 275-284 (2011)
[11] Zhao, Junwen; Easton, Mark; Qian, Ma; Leary, Martin; Brandt, Milan, Effect of building direction on porosity and fatigue life of selective laser melted AlSi12Mg alloy. Mater. Sci. Eng. A, 76-85 (2018)
[12] Hirata, Tomotake; Kimura, Takahiro; Nakamoto, Takayuki, Effects of hot isostatic pressing and internal porosity on the performance of selective laser melted AlSi10Mg alloys. Mater. Sci. Eng. A (2020)
[13] Tian, Yang; Tomus, Dacian; Rometsch, Paul; Wu, Xinhua, Influences of processing parameters on surface roughness of hastelloy X produced by selective laser melting. Addit. Manuf., 103-112 (2017)
[14] Association, Aluminum, Aluminum: Properties and Physical Metallurgy (1984), ASM international
[15] Aversa, Alberta; Lorusso, Massimo; Cattano, Giulio; Manfredi, Diego; Calignano, Flaviana; Ambrosio, Elisa P.; Biamino, Sara; Fino, Paolo; Lombardi, Mariangela; Pavese, Matteo, A study of the microstructure and the mechanical properties of an AlSiNi alloy produced via selective laser melting. J. Alloys Compd., 1470-1478 (2017)
[16] Aboulkhair, Nesma T.; Maskery, Ian; Tuck, Chris; Ashcroft, Ian; Everitt, Nicola M., On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties. J. Mater Process. Technol., 88-98 (2016)
[17] Aboulkhair, Nesma T.; Maskery, Ian; Tuck, Chris; Ashcroft, Ian; Everitt, Nicola M., The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A, 139-146 (2016)
[18] Li, Ruidi; Wang, Minbo; Li, Zhiming; Cao, Peng; Yuan, Tiechui; Zhu, Hongbin, Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms. Acta Mater., 83-98 (2020)
[19] Li, Ruidi; Wang, Minbo; Yuan, Tiechui; Song, Bo; Chen, Chao; Zhou, Kechao; Cao, Peng, Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties. Powder Technol., 117-128 (2017)
[20] Li, Ruidi; Chen, Hui; Zhu, Hongbin; Wang, Minbo; Chen, Chao; Yuan, Tiechui, Effect of aging treatment on the microstructure and mechanical properties of Al-3.02 Mg-0.2 Sc-0.1 Zr alloy printed by selective laser melting. Mater. Des. (2019)
[21] Spierings, Adriaan B.; Dawson, Karl; Uggowitzer, Peter J.; Wegener, Konrad, Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc-and Zr-modified Al-Mg alloys. Mater. Des., 134-143 (2018)
[22] Spierings, Adriaan Bernardus; Dawson, Karl; Kern, Kerstin; Palm, Frank; Wegener, Konrad, SLM-processed Sc-and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment. Mater. Sci. Eng. A, 264-273 (2017)
[23] Best, James P.; Maeder, Xavier; Michler, Johann; Spierings, Adriaan B., Mechanical anisotropy investigated in the complex SLM-processed Sc-and Zr-modified Al-Mg alloy microstructure. Adv. Eng. Mater., 3 (2019)
[24] Glerum, Jennifer A.; Kenel, Christoph; Sun, Tao; Dunand, David C., Synthesis of precipitation-strengthened Al-Sc, Al-Zr and Al-Sc-Zr alloys via selective laser melting of elemental powder blends. Addit. Manuf. (2020)
[25] Everton, Sarah K.; Hirsch, Matthias; Stravroulakis, Petros; Leach, Richard K.; Clare, Adam T., Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des., 431-445 (2016)
[26] Devesse, Wim; De Baere, Dieter; Guillaume, Patrick, High resolution temperature measurement of liquid stainless steel using hyperspectral imaging. Sensors, 1, 91 (2017)
[27] Hooper, Paul A., Melt pool temperature and cooling rates in laser powder bed fusion. Addit. Manuf., 548-559 (2018)
[28] Lamé, Gabriel; Clapeyron, B. P., Mémoire sur la solidification par refroidissement d’un globe liquide, 250-256
[29] Stefan, Johan, Über die theorie der eisbildung, insbesondere über die eisbildung im polarmeere. Ann. Phys., 2, 269-286 (1891) · JFM 23.1188.04
[30] Goodman, Theodore R., The heat-balance integral and its application to problems involving a change of phase. Trans. Am. Soc. Mech. Eng., 2, 335-342 (1958)
[31] Pohlhausen, Karl, Zur näherungsweisen integration der differentialgleichung der iaminaren grenzschicht. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech., 4, 252-290 (1921) · JFM 48.0968.02
[32] Goodman, Theodore R.; Shea, John J., The melting of finite slabs (1960)
[33] Bell, G. E., A refinement of the heat balance integral method applied to a melting problem. Int. J. Heat Mass Transfer, 11, 1357-1362 (1978)
[34] Chen, Shuang-Lin; Yang, Ying; Chen, Sinn-Wen; Lu, Xiong-Gang; Chang, Y. Austin, Solidification simulation using Scheil model in multicomponent systems. J. Phase Equilib. Diffus., 5, 429-434 (2009)
[35] Brown, Robert A.; Kim, Do Hyun, Modelling of directional solidification: from Scheil to detailed numerical simulation. J. Cryst. Growth, 1-4, 50-65 (1991)
[36] Schaffnit, Philippe; Stallybrass, Charles; Konrad, Joachim; Stein, Frank; Weinberg, Matthias, A Scheil-Gulliver model dedicated to the solidification of steel. CALPHAD, 184-188 (2015)
[37] Durinck, Dirk; Jones, Peter Tom; Blanpain, Bart; Wollants, Patrick; Mertens, Gilles; Elsen, Jan, Slag solidification modeling using the Scheil-Gulliver assumptions. J. Am. Ceram. Soc., 4, 1177-1185 (2007)
[38] Basak, Chandra Bhanu; Krishnan, Madangopal, Applicability of Scheil-Gulliver solidification model in real alloy: a case study with Cu-9wt
[39] Rad, M. Torabi; Beckermann, C., A truncated-Scheil-type model for columnar solidification of binary alloys in the presence of melt convection. Materialia (2019)
[40] Morse, S. A., Binary solutions and the lever rule revisited. J. Geol., 4, 471-482 (1997)
[41] Chen, S-L; Zhang, F.; Xie, F-Y; Daniel, S.; Yan, X-Y; Chang, YA; Schmid-Fetzer, R.; Oates, WA, Calculating phase diagrams using PANDAT and PanEngine. JOM, 12, 48-51 (2003)
[42] Rezabeigi, Ehsan; Wood-Adams, Paula M.; Drew, Robin A. L., Isothermal ternary phase diagram of the polylactic acid-dichloromethane-hexane system. Polymer, 14, 3100-3106 (2014)
[43] Tien, L. C.; Churchill, Stuart Winston, Freezing front motion and heat transfer outside an infinite, isothermal cylinder. AIChE J., 5, 790-793 (1965)
[44] Voller, Vaughan R.; Swaminathan, C. R.; Thomas, Brian G., Fixed grid techniques for phase change problems: a review. Internat. J. Numer. Methods Engrg., 4, 875-898 (1990) · Zbl 0729.73237
[45] Basu, Biswajit; Date, A. W., Numerical modelling of melting and solidification problems—A review. Sadhana, 3, 169-213 (1988)
[46] Crank, John; Gupta, Radhey S., A method for solving moving boundary problems in heat flow using cubic splines or polynomials. IMA J. Appl. Math., 3, 296-304 (1972) · Zbl 0299.65049
[47] Gupta, Radhey S., Moving grid method without interpolations. Comput. Methods Appl. Mech. Engrg., 2, 143-152 (1974) · Zbl 0284.76072
[48] Ciment, Melvyn; Sweet, Roland A., Mesh refinements for parabolic equations. J. Comput. Phys., 4, 513-525 (1973) · Zbl 0264.65054
[49] Hashemi, H. T.; Sliepcevich, C. M., 34-41
[50] Comini, G.; del Guidice, S.; Lewis, R. W.; Zienkiewicz, O. G., Finite element solution of non-linear heat conduction problems with special reference to phase change. Internat. J. Numer. Methods Engrg., 3, 613-624 (1974) · Zbl 0279.76045
[51] Poirier, D.; Salcudean, M., On numerical methods used in mathematical modeling of phase change in liquid metals (1988)
[52] V.R. Voller, C.R. Swaminathan, General source-based method for solidification phase change, Numerical Heat Transfer, (Part B):175-189.
[53] Salcudean, M.; Abdullah, Z., On the numerical modelling of heat transfer during solidification processes. Internat. J. Numer. Methods Engrg., 2, 445-473 (1988) · Zbl 0668.76113
[54] Patankar, Suhas V., Numerical Heat Transfer and Fluid Flow (2018), CRC Press
[55] Lin, Stephen; Gan, Zhengtao; Yan, Jinhui; Wagner, Gregory J., A conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processes. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1506.76091
[56] Eyres, NR; Hartree, Douglas Rayner; Ingham, J.; Sarjant, RJ; Wagstaff, JB, The calculation of variable heat flow in solids. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci., 813, 1-57 (1946) · Zbl 0061.27901
[57] Rose, Milton E., A method for calculating solutions of parabolic equations with a free boundary. Math. Comp., 249-256 (1960) · Zbl 0096.10102
[58] Shamsundar, N.; Sparrow, E. M., Analysis of multidimensional conduction phase change via the enthalpy model (1975)
[59] Bell, G. E.; Wood, A. S., On the performance of the enthalpy method in the region of a singularity. Internat. J. Numer. Methods Engrg., 11, 1583-1592 (1983) · Zbl 0515.65090
[60] Tacke, Karl-Hermann, Discretization of the expliclt enthalpy method for planar phase change. Internat. J. Numer. Methods Engrg., 3, 543-554 (1985) · Zbl 0568.65086
[61] Swaminathan, C. R.; Voller, V. R., Towards a general numerical scheme for solidification systems. Int. J. Heat Mass Transfer, 12, 2859-2868 (1997) · Zbl 0931.76071
[62] Voller, Vaughan R.; Cross, M.; Markatos, N. C., An enthalpy method for convection/diffusion phase change. Internat. J. Numer. Methods Engrg., 1, 271-284 (1987) · Zbl 0609.76104
[63] Voller, V. R., A similarity solution for the solidification of a multicomponent alloy. Int. J. Heat Mass Transfer, 12, 2869-2877 (1997) · Zbl 0921.76175
[64] Voller, Vaughan R., Basic Control Volume Finite Element Methods for Fluids and Solids, Vol. 1 (2009), World Scientific · Zbl 1162.74002
[65] Yan, Wentao; Ge, Wenjun; Qian, Ya; Lin, Stephen; Zhou, Bin; Liu, Wing Kam; Lin, Feng; Wagner, Gregory J., Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater., 324-333 (2017)
[66] Wang, Lu; Yan, Wentao, Thermoelectric magnetohydrodynamic model for laser-based metal additive manufacturing. Phys. Rev. A, 6 (2021)
[67] Korner, Carolin; Bauerei, Andreas; Attar, Elham, Fundamental consolidation mechanisms during selective beam melting of powders. Modelling Simul. Mater. Sci. Eng., 8 (2013)
[68] Klassen, Alexander; Scharowsky, Thorsten; Körner, Carolin, Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J. Phys. D: Appl. Phys., 27 (2014)
[69] Wang, Lu; Zhang, Yanming; Yan, Wentao, Evaporation model for keyhole dynamics during additive manufacturing of metal. Phys. Rev. A, 6 (2020)
[70] Yan, Wentao; Qian, Ya; Ge, Wenjun; Lin, Stephen; Liu, Wing Kam; Lin, Feng; Wagner, Gregory J., Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation. Mater. Des., 210-219 (2018)
[71] Khairallah, Saad A.; Anderson, Andrew T.; Rubenchik, Alexander; King, Wayne E., Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater., 36-45 (2016)
[72] Gan, Zhengtao; Yu, Gang; He, Xiuli; Li, Shaoxia, Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of co-base alloy on steel. Int. J. Heat Mass Transfer, 28-38 (2017)
[73] Zhao, Jiaxin; Wang, Gang; Wang, Xiangyu; Luo, Sheng; Wang, Liping; Rong, Yiming, Multicomponent multiphase modeling of dissimilar laser cladding process with high-speed steel on medium carbon steel. Int. J. Heat Mass Transfer (2020)
[74] Flint, Thomas F.; Scotti, Lucia; Basoalto, Hector C.; Smith, Michael C., A thermal fluid dynamics framework applied to multi-component substrates experiencing fusion and vaporisation state transitions. Commun. Phys., 1, 1-12 (2020)
[75] Gu, Heng; Wei, Chao; Li, Lin; Han, Quanquan; Setchi, Rossitza; Ryan, Michael; Li, Qian, Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting. Int. J. Heat Mass Transfer (2020)
[76] Sun, Zhe; Chueh, Yuan-Hui; Li, Lin, Multiphase mesoscopic simulation of multiple and functionally gradient materials laser powder bed fusion additive manufacturing processes. Addit. Manuf. (2020)
[77] Baliga, B. R.; Patankar, S. V., A control volume finite-element method for two-dimensional fluid flow and heat transfer. Numer. Heat Transfer, 3, 245-261 (1983) · Zbl 0557.76097
[78] Deen, William Murray, Analysis of Transport Phenomena (1998), Oxford university press New York
[79] Clyne, T. W.; Kurz, W., Solute redistribution during solidification with rapid solid state diffusion. Metall. Trans. A, 6, 965-971 (1981)
[80] Nestler, Britta; Garcke, Harald; Stinner, Björn, Multicomponent alloy solidification: phase-field modeling and simulations. Phys. Rev. E, 4 (2005)
[81] Lin, Stephen; Yan, Jinhui; Kats, Dmitriy; Wagner, Gregory J., A volume-conserving balanced-force level set method on unstructured meshes using a control volume finite element formulation. J. Comput. Phys., 119-142 (2019) · Zbl 1451.76071
[82] Stefan Domino, NALU documentation.
[83] Chorin, Alexandre Joel, Numerical solution of the Navier-Stokes equations. Math. Comput., 104, 745-762 (1968) · Zbl 0198.50103
[84] Chorin, Alexandre Joel, On the convergence of discrete approximations to the Navier-Stokes equations. Math. Comput., 106, 341-353 (1969) · Zbl 0184.20103
[85] Almgren, Ann S.; Bell, John B.; Colella, Phillip; Howell, Louis H.; Welcome, Michael L., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J. Comput. Phys., 1, 1-46 (1998) · Zbl 0933.76055
[86] Dantzig, Jonathan A.; Rappaz, Michel, Solidification (2016), EPFL Press
[87] Marczak, Wojciech; Adamczyk, Natalia; Lezniak, Marta, Viscosity of associated mixtures approximated by the Grunberg-Nissan model. Int. J. Thermophys., 680-691 (2012)
[88] Murray, J.; Peruzzi, A.; Abriata, J. P., The Al-Zr (aluminum-zirconium) system. J. Phase Equilib., 3, 277-291 (1992)
[89] Shobu, Kazuhisa, CaTCalc: New thermodynamic equilibrium calculation software. CALPHAD, 2, 279-287 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.