×

Physics-informed deep learning for simultaneous surrogate modeling and PDE-constrained optimization of an airfoil geometry. (English) Zbl 1539.76088

Summary: We use a physics-informed neural network (PINN) to simultaneously model and optimize the flow around an airfoil to maximize its lift to drag ratio. The parameters of the airfoil shape are provided as inputs to the PINN and the multidimensional search space of shape parameters is populated with collocation points to ensure that the Navier-Stokes equations are approximately satisfied throughout. We use the fact that the PINN is automatically differentiable to calculate gradients of the lift-to-drag ratio with respect to the airfoil shape parameters. This allows us to optimize with the L-BFGS gradient-based algorithm, which is more efficient than non-gradient-based algorithms, without deriving an adjoint code. We train the PINN with adaptive sampling of collocation points, such that the accuracy of the solution improves as the solution approaches the optimal point. We demonstrate this on two examples: one that optimizes a single parameter, and another that optimizes eleven parameters. The method is successful and, by comparison with conventional CFD, we find that the velocity and pressure fields have small pointwise errors and that the method converges to optimal parameters. We find that different PINNs converge to slightly different parameters, reflecting the fact that there are many closely-spaced local minima when using stochastic gradient descent. This method can be applied relatively easily to other optimization problems and avoids the difficult process of writing adjoint codes. It is, however, more computationally expensive than adjoint-based optimization. As knowledge about training PINNs improves and hardware dedicated to neural networks becomes faster, this method of simultaneous training and optimization with PINNs could become easier and faster than using adjoint codes.

MSC:

76G25 General aerodynamics and subsonic flows
68T05 Learning and adaptive systems in artificial intelligence
68T07 Artificial neural networks and deep learning
76M99 Basic methods in fluid mechanics

References:

[1] Jameson, A.; Kim, S., Reduction of the adjoint gradient formula for aerodynamic shape optimization problems, AIAA J., 41, 11, 2114-2129 (2003)
[2] Molesky, S.; Lin, Z.; Piggott, A. Y.; Jin, W.; Vucković, J.; Rodriguez, A. W., Inverse design in nanophotonics, Nat. Photonics, 12, 11, 659-670 (2018)
[3] Schmidt, S.; Wadbro, E.; Berggren, M., Large-scale three-dimensional acoustic horn optimization, SIAM J. Sci. Comput., 38, 6, B917-B940 (2016) · Zbl 1515.35030
[4] Harbrecht, H.; Loos, F., Optimization of current carrying multicables, Comput. Optim. Appl., 63, 1, 237-271 (2016) · Zbl 1333.49062
[5] Han, J.; Jentzen, A.; Weinan, E., Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. USA, 115, 34, 8505-8510 (2018), arXiv:1707.02568 · Zbl 1416.35137
[6] Li, J.; Guan, Y.; Wang, G.; Wang, G.; Zhang, H.; Lin, J., A meshless method for topology optimization of structures under multiple load cases, Structures, 25, 173-179 (2020), https://www.sciencedirect.com/science/article/pii/S2352012420300886
[7] Daxini, D.; Prajapati, J. M., Parametric shape optimization techniques based on Meshless methods : A review, Struct. Multidiscip. Optim., 56, 1197-1214 (2017)
[8] Madenci, E.; Barut, A.; Dorduncu, M., Peridynamic Differential Operator for Numerical Analysis (2019), Springer Cham · Zbl 07658003
[9] Pironneau, O., On optimum design in fluid mechanics, J. Fluid Mech., 64, 1, 97-110 (1974) · Zbl 0281.76020
[10] Jameson, A., Aerodynamic design via control theory, J. Sci. Comput., 3, 3, 233-260 (1988) · Zbl 0676.76055
[11] Bewley, T. R., Flow control: New challenges for a new Renaissance, Prog. Aerosp. Sci., 37, 1, 21-58 (2001)
[12] Güne, A.; Baydin, G.; Pearlmutter, B. A.; Siskind, J. M., Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res., 18, 1-43 (2018) · Zbl 06982909
[13] Hsu, W. M.; Hughes, J. F.; Kaufman, H., Direct manipulation of free-form deformations, Comput. Graph. (ACM), 26, 2, 177-184 (1992)
[14] Koo, C. L.; Zingg, D. W., Comparison of B-spline surface and free-form deformatio geometry control for aerodynamic optimization, AIAA J., 55, 1, 228-240 (2017)
[15] Yu, H.; Juniper, M. P.; Magri, L., Combined state and parameter estimation in level-set methods, J. Comput. Phys., 399, Article 108950 pp. (2019), arXiv:1903.00321 · Zbl 1453.62403
[16] Kontogiannis, A.; Elgersma, S.; Sederman, A. J.; Juniper, M. P., Joint reconstruction and segmentation of noisy velocity images as an inverse Navier-Stokes problem, J. Fluid Mech., 944, Article A40 pp. (2022)
[17] Stein, K.; Tezduyar, T. E.; Benney, R., Automatic mesh update with the solid-extension mesh moving technique, Comput. Methods Appl. Mech. Engrg., 193, 21-22, 2019-2032 (2004) · Zbl 1067.74587
[18] Kim, S. H.; Boukouvala, F., Machine learning-based surrogate modeling for data-driven optimization: A comparison of subset selection for regression techniques, Optim. Lett., 14, 989-1010 (2020) · Zbl 1444.90119
[19] Chen, L. W.; Cakal, B. A.; Hu, X.; Thuerey, N., Numerical investigation of minimum drag profiles in laminar flow using deep learning surrogates, J. Fluid Mech., 919, 1-28 (2021), arXiv:2009.14339 · Zbl 1495.76035
[20] Raissi, M.; Yazdani, A.; Karniadakis, G. E., Hidden fluid mechanics : A Navier-Stokes informed deep learning framework for assimilating flow visualization data, Science, 367, 6481, 1026-1030 (2020), arXiv:arXiv:1808.04327v1 · Zbl 1478.76057
[21] Eivazi, H.; Tahani, M.; Schlatter, P.; Vinuesa, R., Physics-informed neural networks for solving Reynolds-averaged Navier-Stokes equations (2021), arXiv (2107.10711). arXiv:2107.10711
[22] Anselmi, F.; Rosasco, L.; Poggio, T., On invariance and selectivity in representation learning, Inf. Inference, 5, 2, 134-158 (2016), arXiv:1503.05938 · Zbl 1426.68233
[23] Lecun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 7553, 436-444 (2015)
[24] Hornik, K.; Stinchcombe, M.; White, H., Multilayer feedforward networks are universal approximators, Neural Netw., 2, 5, 359-366 (1989) · Zbl 1383.92015
[25] Higham, C. F.; Higham, D. J., Deep learning: An introduction for applied mathematicians, SIAM Rev., 61, 4, 860-891 (2019), arXiv:1801.05894 · Zbl 1440.68214
[26] Bartholomew-Biggs, M.; Brown, S.; Christianson, B.; Dixon, L., Automatic differentiation of algorithms, J. Comput. Appl. Math., 124, 1-2, 171-190 (2000) · Zbl 0994.65020
[27] Niaki, S. A.; Haghighat, E.; Campbell, T.; Poursartip, A., Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems, Comput. Methods Appl. Mech. Engrg., 384, Article 113959 pp. (2021), arXiv:arXiv:2011.13511v2 · Zbl 1506.74123
[28] Markidis, S., The Old and the New: Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?, Front. Big Data, 4, November, 1-15 (2021), arXiv:2103.09655
[29] Yang, Y.; Perdikaris, P., Adversarial uncertainty quantification in physics-informed neural networks, J. Comput. Phys., 394, 136-152 (2019), arXiv:1811.04026 · Zbl 1452.68171
[30] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[31] Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G. E., DeepXDE: A deep learning library for solving differential equations, SIAM Rev., 3, 208-228 (2021), arXiv:1907.04502 · Zbl 1459.65002
[32] Raissi, M.; Wang, Z.; Triantafyllou, M. S.; Karniadakis, G. E., Deep learning of vortex-induced vibrations, J. Fluid Mech., 861, 119-137 (2019), arXiv:1808.08952 · Zbl 1415.76177
[33] Fathi, M. F.; Perez-Raya, I.; Baghaie, A.; Berg, P.; Janiga, G.; Arzani, A.; D’Souza, R. M., Super-resolution and denoising of 4D-Flow MRI using physics-Informed deep neural nets, Comput. Methods Programs Biomed. (2020)
[34] Arzani, A.; Wang, J. X.; D’Souza, R. M., Uncovering near-wall blood flow from sparse data with physics-informed neural networks, Phys. Fluids, 33, 7, 1-19 (2021), arXiv:2104.08249
[35] Jin, X.; Cai, S.; Li, H.; Karniadakis, G. E., NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations, J. Comput. Phys., 426, Article 109951 pp. (2021), https://www.sciencedirect.com/science/article/pii/S0021999120307257 · Zbl 07510065
[36] Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J., L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Software, 23, 4, 550-560 (1997) · Zbl 0912.65057
[37] Sun, Y.; Sengupta, U.; Juniper, M. P., Code supporting current paper (2023), http://dx.doi.org/10.17863/CAM.95425
[38] Abadi, Martín; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro, Craig; Corrado, Greg S.; Davis, Andy; Dean, Jeffrey; Devin, M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jozefowicz, R.; Jia, Y.; Kaiser, L.; Kudlur, M.; Levenberg, J.; Mané, D.; Schuster, M.; Monga, R.; Moore, S.; Murray, D.; Olah, C.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X., TensorFlow: large-scale machine learning on heterogeneous systems (2015), https://www.tensorflow.org/
[39] Nabian, M. A.; Gladstone, R. J.; Meidani, H., Efficient training of physics-informed neural networks via importance sampling, Comput.-Aided Civ. Infrastruct. Eng., 36, 8, 962-977 (2021), arXiv:2104.12325
[40] Byrd, R. H.; Lu, P.; Nocedal, J.; Zhu, C., A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 5, 1190-1208 (1995) · Zbl 0836.65080
[41] Logg, A.; Mardal, K.-A.; Wells, G., Automated Solution of Differential Equations By the Finite Element Method (2012), Springer: Springer Berlin, Heidelberg · Zbl 1247.65105
[42] Kashefi, A.; Rempe, D.; Guibas, L. J., A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries, Phys. Fluids, 33, 2 (2021), arXiv:2010.09469
[43] Sobieczky, H., Geometry Generator for CFD and Applied Aerodynamics, 137-157 (1997), Springer Vienna: Springer Vienna Vienna
[44] Sobieczky, H., Parametric Airfoils and Wings, 71-87 (1999) · Zbl 0929.76064
[45] Della Vecchia, P.; Daniele, E.; D’Amato, E., An airfoil shape optimization technique coupling PARSEC parameterization and evolutionary algorithm, Aerosp. Sci. Technol., 32, 1, 103-110 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.