×

Critical time-step size analysis and mass scaling by ghost-penalty for immersogeometric explicit dynamics. (English) Zbl 1539.74520

Summary: In this article, we study the effect of small-cut elements on the critical time-step size in an immersogeometric explicit dynamics context. We analyze different formulations for second-order (membrane) and fourth-order (shell-type) equations, and derive scaling relations between the critical time-step size and the cut-element size for various types of cuts. In particular, we focus on different approaches for the weak imposition of Dirichlet conditions: by penalty enforcement and with Nitsche’s method. The conventional stability requirement for Nitsche’s method necessitates either a cut-size dependent penalty parameter, or an additional ghost-penalty stabilization term. Our findings show that both techniques suffer from cut-size dependent critical time-step sizes, but the addition of a ghost-penalty term to the mass matrix serves to mitigate this issue. We confirm that this form of ‘mass-scaling’ does not adversely affect error and convergence characteristics for a transient membrane example, and has the potential to increase the critical time-step size by orders of magnitude. Finally, for a prototypical simulation of a Kirchhoff-Love shell, our stabilized Nitsche formulation reduces the solution error by well over an order of magnitude compared to a penalty formulation at equal time-step size.

MSC:

74S22 Isogeometric methods applied to problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65D07 Numerical computation using splines
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Hallquist, J. O., LS-DYNA theory manual No. March (2006), Livermore Software Technology Corporation
[2] Smith, M., ABAQUS/Standard User’s Manual, Version 6.6 (2009), Dassault Systèmes Simulia Corp: Dassault Systèmes Simulia Corp United States
[3] Ansys Explicit Dynamics, URL www.ansys.com/content/dam/product/structures/ansys-explicit-dynamics-brochure-140.pdf.
[4] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[5] Leidinger, L. F.; Breitenberger, M.; Bauer, A. M.; Hartmann, S.; Wüchner, R.; Bletzinger, K. U.; Duddeck, F.; Song, L., Explicit dynamic isogeometric B-Rep analysis of penalty-coupled trimmed NURBS shells, Comput. Methods Appl. Mech. Engrg., 351 (2019) · Zbl 1441.74256
[6] LS-DYNA: Keyword User Manual, LS-DYNA R8.0 Keyword User’s Manual - Volume III - Multi-Physics Solvers, vol. I (2021), Livermore Software Technology Corporation
[7] Kiendl, J.; Bletzinger, K. U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49-52 (2009) · Zbl 1231.74422
[8] Kiendl, J.; Auricchio, F.; Hughes, T. J.R.; Reali, A., Single-variable formulations and isogeometric discretizations for shear deformable beams, Comput. Methods Appl. Mech. Engrg., 284, 988-1004 (2015) · Zbl 1423.74492
[9] Hughes, T. J.R.; Evans, J. A.; Reali, A., Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems, Comput. Methods Appl. Mech. Engrg., 272 (2014) · Zbl 1296.65148
[10] Puzyrev, V.; Deng, Q.; Calo, V., Spectral approximation properties of isogeometric analysis with variable continuity, Comput. Methods Appl. Mech. Engrg., 334 (2018) · Zbl 1440.65254
[11] Brillouin, L., (Wave Propagation in Periodic Structures. Wave Propagation in Periodic Structures, International Series in Pure and Applied Physics (1946), Dover Books) · Zbl 0063.00607
[12] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg. (2002) · Zbl 1035.65125
[13] Parvizian, J.; Düster, A.; Rank, E., Finite Cell Method: \(h\)- and \(p\)- extension for embedded domain methods in solid mechanics, Comput. Mech., 41, 122-133 (2007) · Zbl 1162.74506
[14] Schillinger, D.; Rank, E., An unfitted \(h p\) adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput. Methods Appl. Mech. Engrg., 200(47-48, 3358-3380 (2011) · Zbl 1230.74197
[15] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J.R., An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Engrg., 284, 1005-1053 (2015) · Zbl 1423.74273
[16] Schillinger, D.; Ruess, M., The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22, 3, 391-455 (2015) · Zbl 1348.65056
[17] Jonsson, T.; Larson, M. G.; Larsson, K., Cut finite element methods for elliptic problems on multipatch parametric surfaces, Comput. Methods Appl. Mech. Engrg., 324 (2017) · Zbl 1439.65176
[18] de Prenter, F.; Verhoosel, C. V.; van Zwieten, G. J.; van Brummelen, E. H., Condition number analysis and preconditioning of the finite cell method, Comput. Methods Appl. Mech. Engrg., 316 (2017) · Zbl 1439.65137
[19] Hughes, T. J.R., the Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2000), Dover Publications: Dover Publications Mineola, NY · Zbl 1191.74002
[20] Archer, J. S., Consistent mass matrix for distributed mass systems, J. Struct. Div., 89, 4 (1963)
[21] Leidinger, L., Explicit Isogeometric B-Rep Analysis for Nonlinear Dynamic Crash Simulations (2020), Technische Universität München, (Ph.D. thesis)
[22] Harari, I.; Albocher, U., Spectral investigations of Nitsche’s method, Finite Elem. Anal. Des., 145, 20-31 (2018)
[23] Burman, E.; Claus, S.; Hansbo, P.; Larson, M. G.M.-G.; Massing, A., CutFEM: discretizing geometry and partial differential equations, Internat. J. Numer. Methods Engrg., 104, 7, 472-501 (2015) · Zbl 1352.65604
[24] Burman, E., Ghost penalty, C. R. Math., 348, 21-22 (2010) · Zbl 1204.65142
[25] Stoter, S. K.F.; Nguyen, T.-H.; Hiemstra, R. R.; Schillinger, D., Variationally consistent mass scaling for explicit time-integration schemes of lower- and higher-order finite element methods, Comput. Methods Appl. Mech. Engrg., 399, 1, Article 115310 pp. (2022), arXiv:2201.10475 · Zbl 1507.65191
[26] Nguyen, T.-H.; Hiemstra, R. R.; Stoter, S. K.F.; Schillinger, D., A variational approach based on perturbed eigenvalue analysis for improving spectral properties of isogeometric multipatch discretizations, Comput. Methods Appl. Mech. Engrg., 392, Article 114671 pp. (2022), arXiv:2111.06501 · Zbl 1507.74501
[27] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The Finite Cell Method for Three-Dimensional Problems of Solid Mechanics, Comput. Methods Appl. Mech. Engrg., 197, 3768-3782 (2008) · Zbl 1194.74517
[28] Verhoosel, C. V.; van Brummelen, E. H.; Divi, S. C.; de Prenter, F., Scan-based immersed isogeometric flow analysis (2022), URL https://arxiv.org/abs/2208.14994 · Zbl 1507.65056
[29] Divi, S. C.; Verhoosel, C. V.; Auricchio, F.; Reali, A.; van Brummelen, E. H., Error-estimate-based adaptive integration for immersed isogeometric analysis, Comput. Math. Appl., 80, 11 (2020) · Zbl 1455.74087
[30] Joulaian, M.; Hubrich, S.; Düster, A., Numerical integration of discontinuities on arbitrary domains based on moment fitting, Comput. Mech., 57, 6, 979-999 (2016) · Zbl 1382.65066
[31] Abedian, A.; Düster, A., Equivalent Legendre polynomials: Numerical integration of discontinuous functions in the finite element methods, Comput. Methods Appl. Mech. Engrg., 343 (2019) · Zbl 1440.65166
[32] Petö, M.; Garhuom, W.; Duvigneau, F.; Eisenträger, S.; Düster, A.; Juhre, D., Octree-based integration scheme with merged sub-cells for the finite cell method: Application to non-linear problems in 3D, Comput. Methods Appl. Mech. Engrg., 401, Article 115565 pp. (2022) · Zbl 1507.74504
[33] Verhoosel, C. V.; Van Zwieten, G. J.; Van Rietbergen, B.; de Borst, R., Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone, Comput. Methods Appl. Mech. Engrg., 284, 138-164 (2015) · Zbl 1423.74929
[34] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications (1973) · Zbl 0251.35001
[35] Hinton, E.; Rock, T.; Zienkiewicz, O. C., A note on mass lumping and related processes in the finite element method, Earthq. Eng. Struct. Dyn., 4, 3 (1976)
[36] Yang, Y.; Zheng, H.; Sivaselvan, M. V., A rigorous and unified mass lumping scheme for higher-order elements, Comput. Methods Appl. Mech. Engrg., 319 (2017) · Zbl 1439.65125
[37] Strang, G.; Fix, G. J., an Analysis of the Finite Element Method (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[38] Patera, A. T., A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys., 54, 3 (1984) · Zbl 0535.76035
[39] Apostolatos, A.; Breitenberger, M.; Wüchner, R.; Bletzinger, K. U., Domain decomposition methods and Kirchhoff-Love shell multipatch coupling in isogeometric analysis, (Lecture Notes in Computational Science and Engineering, vol. 107 (2015)) · Zbl 1382.74115
[40] Herrema, A. J.; Johnson, E. L.; Proserpio, D.; Wu, M. C.; Kiendl, J.; Hsu, M. C., Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades, Comput. Methods Appl. Mech. Engrg., 346 (2019) · Zbl 1440.74400
[41] Pasch, T.; Leidinger, L. F.; Apostolatos, A.; Wüchner, R.; Bletzinger, K. U.; Duddeck, F., A priori penalty factor determination for (trimmed) NURBS-based shells with Dirichlet and coupling constraints in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 377 (2021) · Zbl 1506.74428
[42] Barrett, J. W.; Elliott, C. M., Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7, 3 (1987) · Zbl 0629.65118
[43] Coradello, L.; Kiendl, J.; Buffa, A., Coupling of non-conforming trimmed isogeometric Kirchhoff-Love shells via a projected super-penalty approach, Comput. Methods Appl. Mech. Engrg., 387 (2021) · Zbl 1507.74461
[44] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, (Abhandlungen Aus Dem Mathematischen Seminar Der UniversitäT Hamburg, vol. 36 (1971), Springer), 9-15 · Zbl 0229.65079
[45] Barbosa, H. J.; Hughes, T. J., The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition, Comput. Methods Appl. Mech. Engrg. (1991) · Zbl 0764.73077
[46] Stenberg, R., On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math. (1995) · Zbl 0856.65130
[47] Dolbow, J.; Harari, I., An efficient finite element method for embedded interface problems, Internat. J. Numer. Methods Engrg. (2009) · Zbl 1183.76803
[48] Warburton, T.; Hesthaven, J. S., On the constants in hp-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Engrg. (2003) · Zbl 1038.65116
[49] de Prenter, F.; Lehrenfeld, C.; Massing, A., A note on the stability parameter in Nitsche’s method for unfitted boundary value problems, Comput. Math. Appl., 75, 12 (2018) · Zbl 1419.65106
[50] Höllig, K.; Reif, U., Nonuniform web-splines, Comput. Aided Geom. Design, 20, 5 (2003) · Zbl 1069.65502
[51] Badia, S.; Verdugo, F.; Martín, A. F., The aggregated unfitted finite element method for elliptic problems, Comput. Methods Appl. Mech. Engrg., 336 (2018) · Zbl 1440.65175
[52] Divi, S. C.; Van Zuijlen, P. H.; Hoang, T.; De Prenter, F.; Auricchio, F.; Reali, A.; Van Brummelen, E. H.; Verhoosel, C. V., Residual-based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B-splines, J. Mech., 38, 204-237 (2022), arXiv:2202.08763 URL https://academic.oup.com/jom/article/doi/10.1093/jom/ufac015/6593152
[53] Badia, S.; Neiva, E.; Verdugo, F., Linking ghost penalty and aggregated unfitted methods, Comput. Methods Appl. Mech. Engrg., 388 (2022) · Zbl 1507.65231
[54] Deng, Q.; Calo, V. M., A boundary penalization technique to remove outliers from isogeometric analysis on tensor-product meshes, Comput. Methods Appl. Mech. Engrg., 383 (2021) · Zbl 1506.65169
[55] Larson, M. G.; Zahedi, S., Conservative Discontinuous Cut Finite Element Methods (2021), arXiv preprint arXiv:2105.02202
[56] Burman, E.; Hansbo, P.; Larson, M. G., Explicit Time Stepping for the Wave Equation using CutFEM with Discrete Extension, SIAM J. Sci. Comput., 44, 3, A1254-A1289 (2022) · Zbl 1493.65146
[57] Szilard, R., Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods, Appl. Mech. Rev., 57, 6 (2004)
[58] Vinson, J. R.; Abrate, S., The Behavior of Thin Walled Structures, Beams, Plates, and Shells, J. Appl. Mech., 57, 4 (1990)
[59] Cai, Y.; Chen, J.; Wang, N., A Nitsche extended finite element method for the biharmonic interface problem, Comput. Methods Appl. Mech. Engrg., 382 (2021) · Zbl 1506.74393
[60] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 41-43 (2006) · Zbl 1119.74024
[61] Bischoff, M.; Bletzinger, K.-U.; Wall, W. A.; Ramm, E., Models and Finite Elements for Thin-Walled Structures, (Encyclopedia of Computational Mechanics (2004))
[62] Benzaken, J.; Evans, J. A.; McCormick, S. F.; Tamstorf, R., Nitsche’s method for linear Kirchhoff-Love shells: Formulation, error analysis, and verification, Comput. Methods Appl. Mech. Engrg., 374 (2021) · Zbl 1506.74185
[63] G.J. van Zwieten, J. van Zwieten, C.V. Verhoosel, E. Fonn, T.M. van Opstal, W. Hoitinga, Nutils 7.0, http://dx.doi.org/10.5281/zenodo.6006701.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.