×

Phase field model for brittle fracture in multiferroic materials. (English) Zbl 1539.74387

Summary: Multiferroic materials, which simultaneously possess piezomagnetic, piezoelectric, and electromagnetic coupling effects, have a wide range of applications in various fields. Multiferroic materials are generally brittle with low fracture toughness, and accurate prediction of the fracture behaviors of multiferroics is challenging. In this work, a phase field model for brittle fracture in multiferroic materials is developed with the help of the Hamilton principle. In light of the second law of thermodynamics, the constitutive equations are derived in the context of the phase field method. The present theoretical framework unifies two classical phase field models and four combinations of the electric and magnetic boundary conditions. The residual controlled staggered algorithm, which enjoys a higher accuracy and lower computational cost, is extended to the fracture problems in the context of magneto-electro-elasticity. Systematic numerical simulations are performed in both 2D and 3D cases. The influences of the external magnetic field, electric field, and electric and magnetic boundary conditions on fracture behaviors of multiferroic materials are studied in detail. The applied magnetic field may not only accelerate or delay the fracture, but also influence the crack path. The present work is beneficial to assess the safety of multiferroic-based devices in engineering applications.

MSC:

74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Van Run, A.; Terrell, D. R.; Scholing, J. H., An in situ grown eutectic magnetoelectric composite material: Part 2 physical properties, J. Mater. Sci., 9, 1710-1714 (1974)
[2] Nan, C. W.; Bichurin, M. I.; Dong, S.; Viehland, D.; Srinivasa, G., Multiferroic magnetoelectric composites: Historical perspective, status, and future directions, J. Appl. Phys., 103, Article 031101 pp. (2008)
[3] Nan, C. W.; Liu, J. M., Multiferroics: a beautiful but challenging multi-polar world, Nat. Sci. Rev., 6, 620 (2019)
[4] Wang, B. L.; Mai, Y. W., Crack tip field in piezoelectric/piezomagnetic media, Eur. J. Mech. A Solids, 22, 591-602 (2003) · Zbl 1032.74641
[5] Gao, C. F.; Kessler, H.; Balke, H., Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack, Internat. J. Engrg. Sci., 41, 969-981 (2003) · Zbl 1211.74187
[6] Gao, C. F.; Kessler, H.; Balke, H., Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks, Internat. J. Engrg. Sci., 41, 983-994 (2003) · Zbl 1211.74188
[7] Feng, W.; Su, R., Dynamic fracture behaviors of cracks in a functionally graded magneto-electro-elastic plate, Eur. J. Mech. A Solids, 26, 363-379 (2007) · Zbl 1107.74022
[8] Feng, W. J.; Pan, E., Dynamic fracture behavior of an internal interfacial crack between two dissimilar magneto-electro-elastic plates, Eng. Fract. Mech., 75, 1468-1487 (2008)
[9] Zhang, P. W., Dynamic fracture of a rectangular limited-permeable crack in magneto-electro-elastic media under a time-harmonic elastic P-wave, Int. J. Solids Struct., 48, 553-566 (2011) · Zbl 1236.74265
[10] Li, X. Y.; Zheng, R. F.; Chen, W. Q.; Kang, G. Z.; Gao, C. F.; Müller, R., Three-dimensional exact magneto-electro-elastic field in an infinite transversely isotropic space with an elliptical crack under uniform loads: Shear mode, Internat. J. Engrg. Sci., 116, 104-129 (2017) · Zbl 1423.74312
[11] Wu, T. H.; Li, X. Y., Elliptical crack problem in magneto-electro-thermo-elasticity of transversely isotropic materials: 3D analytical and numerical solutions, Internat. J. Engrg. Sci., 144, Article 103136 pp. (2019) · Zbl 1476.74039
[12] Rao, B. N.; Kuna, M., Interaction integrals for fracture analysis of functionally graded magnetoelectroelastic materials, Int. J. Fract., 153, 15-37 (2008) · Zbl 1273.74479
[13] Li, Y.; Feng, W.; Xu, Z., Fracture analysis of cracked 2D planar and axisymmetric problems of magneto-electro-elastic materials by the MLPG coupled with FEM, Comput. Methods Appl. Mech. Engrg., 198, 2347-2359 (2009) · Zbl 1229.74133
[14] García-Sánchez, F.; Rojas-Díaz, R.; Sáez, A.; Zhang, C., Fracture of magnetoelectroelastic composite materials using boundary element method (BEM), Theor. Appl. Fract. Mech., 47, 192-204 (2007)
[15] Rojas-Díaz, R.; Denda, M.; García-Sánchez, F.; Sáez, A., Dual BEM analysis of different crack face boundary conditions in 2D magnetoelectroelastic solids, Eur. J. Mech. A Solids, 31, 152-162 (2012) · Zbl 1278.74182
[16] Bhargava, R. R.; Sharma, K., Application of X-FEM to study two-unequal-collinear cracks in 2-D finite magnetoelectoelastic specimen, Comput. Mater. Sci., 60, 75-98 (2012)
[17] Ma, P.; Su, R. K.L.; Feng, W. J., Crack tip enrichment functions for extended finite element analysis of two-dimensional interface cracks in anisotropic magnetoelectroelastic bimaterials, Eng. Fract. Mech., 161, 21-39 (2016)
[18] Sh, E. L.; Kattimani, S.; Trung, N. T., Frequency response analysis of edge-cracked magneto-electro-elastic functionally graded plates using extended finite element method, Theor. Appl. Fract. Mech., 120, Article 103417 pp. (2022)
[19] Jena, J.; Singh, I. V.; Gaur, V., A numerical study of semipermeable cracks in Magneto-Electro-Elastic material using XFEM, Eng. Fract. Mech., 275, Article 108817 pp. (2022)
[20] Bui, T. Q.; Hirose, S.; Zhang, C. Z.; Rabczuk, T.; Wu, C. T., Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites, Mech. Mater., 97, 135-163 (2016)
[21] Singh, S. K.; Singh, I. V., Extended isogeometric analysis for fracture in functionally graded magneto-electro-elastic material, Eng. Fract. Mech., 247, Article 107640 pp. (2021)
[22] Schlüter, A.; Willenbcher, A.; Kuhn, C.; Müller, R., Phase field approximation of dynamic brittle fracture, Comput. Mech., 54, 1141-1161 (2015) · Zbl 1311.74106
[23] Francfort, G. A.; Marigo, J. J., Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319-1342 (1998) · Zbl 0966.74060
[24] Bourdin, B.; Francfort, G. A.; Marigo, J. J., Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797-826 (2000) · Zbl 0995.74057
[25] Bourdin, B., Numerical implementation of the variational formulation of quasi-static brittle fracture, Interfaces Free Bound., 9, 411-430 (2007) · Zbl 1130.74040
[26] Bourdin, B.; Francfort, G. A.; Marigo, J. J., The variational approach to fracture, J. Elast., 91, 5-148 (2008) · Zbl 1176.74018
[27] Miehe, C.; Welschinger, F.; Hofacker, M., Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Comput. Methods Appl. Mech. Engrg., 83, 1273-1311 (2010) · Zbl 1202.74014
[28] Miehe, C.; Hofacker, M.; Welschinger, F., A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765-2778 (2010) · Zbl 1231.74022
[29] Miehe, C.; Welschinger, F.; Hofacker, M., A phase field model of electromechanical fracture, J. Mech. Phys. Solids, 58, 1716-1740 (2010) · Zbl 1200.74123
[30] Pham, K.; Amor, H.; Marigo, J. J.; Maurini, C., Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., 20, 4, 618-652 (2011)
[31] Wu, J. Y., A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, 103, 72-99 (2017)
[32] Wu, J. Y., A geometrically regularized gradient-damage model with energetic equivalence, Comput. Methods Appl. Mech. Engrg., 328, 612-637 (2018) · Zbl 1439.74032
[33] Wu, J. Y.; Nguyen, V. P., A length scale insensitive phase-field damage model for brittle fracture, J. Mech. Phys. Solids, 119, 20-42 (2018)
[34] Kuhn, C.; Müller, R., A continuum phase field model for fracture, Eng. Fract. Mech., 77, 3625-3634 (2010)
[35] Zhou, S.; Rabczuk, T.; Zhuang, X., Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies, Adv. Eng. Softw., 122, 31-49 (2018)
[36] Mandal, T. K.; Nguyen, V. P.; Wu, J. Y., A length scale insensitive anisotropic phase field fracture model for hyperelastic composites, Int. J. Mech. Sci., 188, Article 105941 pp. (2020)
[37] Li, W.; Nguyen-Thanh, N.; Zhou, K., Phase-field modeling of interfacial debonding in multi-phase materials via an adaptive isogeometric-meshfree approach, Eng. Fract. Mech., 269, Article 108481 pp. (2022)
[38] Kuhn, C.; Noll, T.; Müller, R., On phase field modeling of ductile fracture, GAMM-Mitt., 39, 35-54 (2016) · Zbl 1397.74027
[39] Ambati, M.; Kruse, R.; De Lorenzis, L., A phase-field model for ductile fracture at finite strains and its experimental verification, Comput. Mech., 57, 149-167 (2016) · Zbl 1381.74181
[40] Rodriguez, P.; Ulloa, J.; Samaniego, C.; Samaniego, E., A variational approach to the phase field modeling of brittle and ductile fracture, Int. J. Mech. Sci., 144, 502-517 (2018)
[41] Li, P.; Yvonnet, J.; Combescure, C., An extension of the phase field method to model interactions between interfacial damage and brittle fracture in elastoplastic composites, Int. J. Mech. Sci., 179, Article 105633 pp. (2018)
[42] Khalil, Z.; Elghazouli, A. Y.; Martínez-Pañeda, E., A generalised phase field model for fatigue crack growth in elastic-plastic solids with an efficient monolithic solver, Comput. Methods Appl. Mech. Engrg., 388, Article 114286 pp. (2022) · Zbl 1507.74081
[43] Miehe, C.; Mauthe, S., Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Comput. Methods Appl. Mech. Engrg., 304, 619-655 (2016) · Zbl 1425.74423
[44] Zhou, S.; Zhuang, X.; Rabczuk, T., A phase-field modeling approach of fracture propagation in poroelastic media, Eng. Geol., 240, 189-203 (2018)
[45] Li, P. D.; Li, D. Y.; Wang, Q. Y.; Zhou, K., Phase-field modeling of hydro-thermally induced fracture in thermo-poroelastic media, Eng. Fract. Mech., 254, Article 107887 pp. (2021)
[46] Ruan, H.; Rezaei, S.; Yang, Y.; Gross, D.; Xu, B. X., A thermo-mechanical phase-field fracture model: Application to hot cracking simulations in additive manufacturing, J. Mech. Phys. Solids, 172, Article 105169 pp. (2023)
[47] Wu, J. Y.; Hong, Y. F., Crack nucleation and propagation of electromagneto-thermo-mechanical fracture in bulk superconductors during magnetization, J. Mech. Phys. Solids, 172, Article 105168 pp. (2023)
[48] Li, W.; Nguyen-Thanh, N.; Zhou, K., Phase-field modeling of brittle fracture in a 3D polycrystalline material via an adaptive isogeometric-meshfree approach, Internat. J. Numer. Methods Engrg., 121, 22, 5042-5065 (2020) · Zbl 1543.74087
[49] Li, W.; Ambati, M.; Nguyen-Thanh, N.; Du, H.; Zhou, K., Adaptive fourth-order phase-field modeling of ductile fracture using an isogeometric-meshfree approach, Comput. Methods Appl. Mech. Engrg., 406, Article 115861 pp. (2023) · Zbl 1539.74378
[50] Nguyen-Thanh, N.; Li, W.; Huang, J.; Zhou, K., Multi phase-field modeling of anisotropic crack propagation in 3D fiber-reinforced composites based on an adaptive isogeometric meshfree collocation method, Comput. Methods Appl. Mech. Engrg., 393, Article 114794 pp. (2022) · Zbl 1507.74406
[51] Abdollahi, A.; Arias, I., Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions, J. Mech. Phys. Solids, 60, 2100-2126 (2012)
[52] Wilson, Z. A.; Borden, M. J.; Landis, C. M., A phase-field model for fracture in piezoelectric ceramics, Int. J. Fract., 183, 135-153 (2013)
[53] Sridhar, A.; Keip, M. A., A phase-field model for anisotropic brittle fracturing of piezoelectric ceramics, Int. J. Fract., 220, 221-242 (2019)
[54] Wu, J. Y.; Chen, W. X., Phase-field modeling of electromechanical fracture in piezoelectric solids: Analytical results and numerical simulations, Comput. Methods Appl. Mech. Engrg., 387, Article 114125 pp. (2021) · Zbl 1507.74428
[55] Tan, Y.; He, Y.; Liu, C.; Li, X., Phase field fracture model of transversely isotropic piezoelectric materials with thermal effect, Eng. Fract. Mech., 268, Article 108479 pp. (2022)
[56] Tan, Y.; He, Y.; Li, X., Phase field fracture modeling of transversely isotropic piezoelectric material with anisotropic fracture toughness, Int. J. Solids Struct., 248, Article 111615 pp. (2022)
[57] Tan, Y.; He, Y.; Li, X.; Kang, G., A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme, Comput. Methods Appl. Mech. Engrg., 399, Article 115459 pp. (2022) · Zbl 1507.74421
[58] Zhang, Y.; Wang, J.; Zhang, T. Y., The jumping dielectric breakdown behavior induced by crack propagation in ferroelectric materials: A phase field study, J. Mech. Phys. Solids, 169, Article 105088 pp. (2022)
[59] Kiran, R.; Nguyen-Thanh, N.; Yu, H.; Zhou, K., Adaptive isogeometric analysis-based phase-field modeling of interfacial fracture in piezoelectric composites, Eng. Fract. Mech., 10918 (2023), in press
[60] Parton, V. Z., Fracture mechanics of piezoelectric materials, Acta Astronaut., 3, 671-683 (1976) · Zbl 0351.73115
[61] Deeg, W. F.J., The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids (1980), Stanford University, (Doctoral dissertation)
[62] Wang, B. L.; Mai, Y. W., Applicability of the crack-face electromagnetic boundary conditions for fracture of magnetoelectroelastic materials, Int. J. Solids Struct., 44, 387-398 (2007) · Zbl 1178.74145
[63] Li, X. Y.; Zheng, R. F.; Kang, G. Z.; Chen, W. Q.; Müller, R., Closed-form field in an infinite space of transversely isotropic multiferroic composite medium with an elliptical or penny-shaped crack: 3D exact analysis, Int. J. Solids Struct., 80, 96-117 (2016)
[64] Landis, C. M., Energetically consistent boundary conditions for electromechanical fracture, Int. J. Solids Struct., 41, 22-23, 6291-6315 (2004) · Zbl 1120.74755
[65] Park, S.; Sun, C. T., Fracture criteria for piezoelectric ceramics, J. Am. Ceram. Soc., 78, 1475-1480 (1995)
[66] Bleyer, J.; Alessi, R., Phase-field modeling of anisotropic brittle fracture including several damage mechanisms, Comput. Methods Appl. Mech. Engrg., 336, 213-236 (2018) · Zbl 1440.74354
[67] Amor, H.; Marigo, J. J.; Maurini, C., Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, 57, 1209-1229 (2009) · Zbl 1426.74257
[68] Borden, M. J.; Hughes, T. J.R.; Landis, C. M.; Verhoosel, C. V., A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Engrg., 273, 100-118 (2014) · Zbl 1296.74098
[69] Goswami, S.; Anitescu, C.; Rabczuk, T., Adaptive fourth-order phase field analysis for brittle fracture, Comput. Methods Appl. Mech. Engrg., 361, Article 112808 pp. (2014) · Zbl 1442.74202
[70] Seleš, K.; Lesičar, T.; Tonković, Z.; Sorić, J., A residual control staggered solution scheme for the phase-field modeling of brittle fracture, Eng. Fract. Mech., 205, 370-386 (2019)
[71] Seleš, K.; Aldakheel, F.; Tonković, Z.; Sorić, J.; Wriggers, P., A general phase-field model for fatigue failure in brittle and ductile solids, Comput. Mech., 67, 1431-1452 (2021) · Zbl 1468.74056
[72] Ambati, M.; Gerasimov, T.; De Lorenzis, L., A review on phase-field models of brittle fracture and a new fast hybrid formulation, Comput. Mech., 55, 2, 383-405 (2015) · Zbl 1398.74270
[73] Azinpour, E.; Cruz, D. J.; Cesar de Sa, J. M.A.; Santos, A., Phase-field approach in elastoplastic solids: application of an iterative staggered scheme and its experimental validation, Comput. Mech., 68, 255-269 (2021) · Zbl 1480.74283
[74] Aboudi, J., Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites, Smart Mater. Struct., 10, 867 (2001)
[75] Zhou, F.; Cheng, G., Lattice Boltzmann model for predicting effective thermal conductivity of composite with randomly distributed particles: considering effect of interactions between particles and matrix, Comput. Mater. Sci., 92, 157-165 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.